These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15853307)

  • 1. Promiscuous catalysis by the tetrahymena group I ribozyme.
    Forconi M; Herschlag D
    J Am Chem Soc; 2005 May; 127(17):6160-1. PubMed ID: 15853307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction.
    Hougland JL; Sengupta RN; Dai Q; Deb SK; Piccirilli JA
    Biochemistry; 2008 Jul; 47(29):7684-94. PubMed ID: 18572927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion catalysis in the Tetrahymena ribozyme reaction.
    Piccirilli JA; Vyle JS; Caruthers MH; Cech TR
    Nature; 1993 Jan; 361(6407):85-8. PubMed ID: 8421499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.
    Narlikar GJ; Herschlag D
    Biochemistry; 1998 Jul; 37(28):9902-11. PubMed ID: 9665695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA; McConnell TS; Zaug AJ; Noller HF; Cech TR
    Science; 1992 Jun; 256(5062):1420-4. PubMed ID: 1604316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution in vitro of an RNA enzyme with altered metal dependence.
    Lehman N; Joyce GF
    Nature; 1993 Jan; 361(6408):182-5. PubMed ID: 8421526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
    Shan SO; Narlikar GJ; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10976-88. PubMed ID: 10460152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tetrahymena ribozyme acts like an RNA restriction endonuclease.
    Zaug AJ; Been MD; Cech TR
    Nature; 1986 Dec 4-10; 324(6096):429-33. PubMed ID: 3537808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodation of Ca(II) ions for catalytic activity by a group I ribozyme.
    Cernak P; Madix RA; Kuo LY; Lehman N
    J Inorg Biochem; 2008 Jul; 102(7):1495-506. PubMed ID: 18295895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic strategies of self-cleaving ribozymes.
    Cochrane JC; Strobel SA
    Acc Chem Res; 2008 Aug; 41(8):1027-35. PubMed ID: 18652494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics.
    Heilman-Miller SL; Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 2001 May; 309(1):57-68. PubMed ID: 11491301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution.
    Yoshida A; Sun S; Piccirilli JA
    Nat Struct Biol; 1999 Apr; 6(4):318-21. PubMed ID: 10201397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
    Johnson AK; Sinha J; Testa SM
    Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.