BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 15853360)

  • 1. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics.
    Kelly JF; Downey G
    J Agric Food Chem; 2005 May; 53(9):3281-6. PubMed ID: 15853360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.
    León L; Kelly JD; Downey G
    Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics.
    Kelly JF; Downey G; Fouratier V
    J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups.
    Kelly JD; Petisco C; Downey G
    J Agric Food Chem; 2006 Aug; 54(17):6166-71. PubMed ID: 16910703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits.
    Liu Y; Ying Y; Yu H; Fu X
    J Agric Food Chem; 2006 Apr; 54(8):2810-5. PubMed ID: 16608193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC; Dixit V; Cho BK; Malik KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy.
    Tewari J; Irudayaraj J
    J Agric Food Chem; 2004 Jun; 52(11):3237-43. PubMed ID: 15161176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Estimation of soluble solids content of apple fresh juice by FTNIR spectroscopy].
    Lu HS; Ying YB; Fu XP; Yu HY; Liu YD; Tian HQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):494-8. PubMed ID: 17554906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous monitoring of organic acids and sugars in fresh and processed apple juice by Fourier transform infrared-attenuated total reflection spectroscopy.
    Irudayaraj J; Tewari J
    Appl Spectrosc; 2003 Dec; 57(12):1599-604. PubMed ID: 14686782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis.
    Wang J; Kliks MM; Jun S; Jackson M; Li QX
    J Food Sci; 2010 Mar; 75(2):C208-14. PubMed ID: 20492227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of orange juice adulteration with beet medium invert sugar using anion-exchange liquid chromatography with pulsed amperometric detection.
    Swallow KW; Low NH; Petrus DR
    J Assoc Off Anal Chem; 1991; 74(2):341-5. PubMed ID: 2050615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. International multidimensional authenticity specification (IMAS) algorithm for detection of commercial pomegranate juice adulteration.
    Zhang Y; Krueger D; Durst R; Lee R; Wang D; Seeram N; Heber D
    J Agric Food Chem; 2009 Mar; 57(6):2550-7. PubMed ID: 19249817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice.
    Al-Qadiri HM; Lin M; Cavinato AG; Rasco BA
    Int J Food Microbiol; 2006 Aug; 111(1):73-80. PubMed ID: 16860897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy.
    Lin M; Al-Holy M; Chang SS; Huang Y; Cavinato AG; Kang DH; Rasco BA
    Int J Food Microbiol; 2005 Dec; 105(3):369-76. PubMed ID: 16126293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.
    Dixit V; Tewari JC; Cho BK; Irudayaraj JM
    Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adulteration of apple with pear juice: emphasis on major carbohydrates, proline, and arbutin.
    Thavarajah P; Low NH
    J Agric Food Chem; 2006 Jun; 54(13):4861-7. PubMed ID: 16787040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of apple juice concentrate adulteration with date concentrate, fructose and glucose syrup using HPLC-RID incorporated with chemometric tools.
    Yeganeh-Zare S; Farhadi K; Amiri S
    Food Chem; 2022 Feb; 370():131015. PubMed ID: 34509943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and quantification of apple adulteration in diluted and sulfited strawberry and raspberry purées using visible and near-infrared spectroscopy.
    Downey G; Kelly JD
    J Agric Food Chem; 2004 Jan; 52(2):204-9. PubMed ID: 14733496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-targeted detection of grape molasses adulteration with sugar and apple molasses by mid-infrared spectroscopy coupled to independent components analysis.
    Abi Rizk H; Estephan J; Salameh C; Kassouf A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Jan; 40(1):1-11. PubMed ID: 36318876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.