BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 15853691)

  • 21. Preparation of magnetic gelatin nanoparticles and investigating the possible use as chemotherapeutic agent.
    Yılmaz H; Sanlıer SH
    Artif Cells Nanomed Biotechnol; 2013 Apr; 41(2):69-77. PubMed ID: 23305120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo.
    Xiao X; Liu Y; Guo M; Fei W; Zheng H; Zhang R; Zhang Y; Wei Y; Zheng G; Li F
    J Biomater Appl; 2016 Jul; 31(1):23-35. PubMed ID: 27059495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and drug release behavior of poly (trimethylene carbonate)-poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles.
    Zhang Y; Zhuo RX
    Biomaterials; 2005 May; 26(14):2089-94. PubMed ID: 15576183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gelatin modified lipid nanoparticles for anti- viral drug delivery.
    K S J; S S; Kalarikkal N; Pothen LA; Thomas S
    Chem Phys Lipids; 2017 Oct; 207(Pt A):24-37. PubMed ID: 28698149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery.
    Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P
    Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles.
    Saxena A; Sachin K; Bohidar HB; Verma AK
    Colloids Surf B Biointerfaces; 2005 Sep; 45(1):42-8. PubMed ID: 16112559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs.
    Li WM; Su CW; Chen YW; Chen SY
    Acta Biomater; 2015 Mar; 15():191-9. PubMed ID: 25542535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.
    Liu Y; Pan J; Feng SS
    Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.
    Win KY; Feng SS
    Biomaterials; 2005 May; 26(15):2713-22. PubMed ID: 15585275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles.
    Meghani NM; Amin H; Park C; Cui JH; Cao QR; Choi KH; Lee BJ
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110760. PubMed ID: 32279783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymeric micelles for pH-responsive delivery of cisplatin.
    Shahin M; Safaei-Nikouei N; Lavasanifar A
    J Drug Target; 2014 Aug; 22(7):629-37. PubMed ID: 24878378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery.
    Anitha A; Maya S; Deepa N; Chennazhi KP; Nair SV; Jayakumar R
    J Biomater Sci Polym Ed; 2012; 23(11):1381-400. PubMed ID: 21722423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine.
    Khan H; Shukla RN; Bajpai AK
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():457-65. PubMed ID: 26838872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential.
    Sahle FF; Balzus B; Gerecke C; Kleuser B; Bodmeier R
    Eur J Pharm Sci; 2016 Sep; 92():98-109. PubMed ID: 27393341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles.
    Rajan M; Raj V; Al-Arfaj AA; Murugan AM
    Int J Pharm; 2013 Sep; 453(2):514-22. PubMed ID: 23796828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer.
    Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N
    Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery.
    Zhang Y; Li J; Lang M; Tang X; Li L; Shen X
    J Colloid Interface Sci; 2011 Feb; 354(1):202-9. PubMed ID: 21094493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery.
    Madhusudana Rao K; Krishna Rao KS; Ramanjaneyulu G; Ha CS
    Int J Pharm; 2015 Jan; 478(2):788-95. PubMed ID: 25528297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer.
    Hammadi NI; Abba Y; Hezmee MNM; Razak ISA; Jaji AZ; Isa T; Mahmood SK; Zakaria MZAB
    Pharm Res; 2017 Jun; 34(6):1193-1203. PubMed ID: 28382563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From The Mine to Cancer Therapy: Natural and Biodegradable Theranostic Silicon Nanocarriers from Diatoms for Sustained Delivery of Chemotherapeutics.
    Maher S; Kumeria T; Wang Y; Kaur G; Fathalla D; Fetih G; Santos A; Habib F; Evdokiou A; Losic D
    Adv Healthc Mater; 2016 Oct; 5(20):2667-2678. PubMed ID: 27594524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.