These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 15853798)

  • 1. Mammalian mitotic centromere-associated kinesin (MCAK): a new molecular target of sulfoquinovosylacylglycerols novel antitumor and immunosuppressive agents.
    Aoki S; Ohta K; Yamazaki T; Sugawara F; Sakaguchi K
    FEBS J; 2005 May; 272(9):2132-40. PubMed ID: 15853798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity.
    Moore A; Wordeman L
    Biochem J; 2004 Oct; 383(Pt 2):227-35. PubMed ID: 15250824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-loop insertion restores microtubule depolymerizing activity of a "neckless" MCAK mutant.
    Ovechkina Y; Wagenbach M; Wordeman L
    J Cell Biol; 2002 Nov; 159(4):557-62. PubMed ID: 12446739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.
    Maney T; Wagenbach M; Wordeman L
    J Biol Chem; 2001 Sep; 276(37):34753-8. PubMed ID: 11466324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the ATP-binding domain affect the subcellular distribution of mitotic centromere-associated kinesin (MCAK).
    Wordeman L; Wagenbach M; Maney T
    Cell Biol Int; 1999; 23(4):275-86. PubMed ID: 10600236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation.
    Maney T; Hunter AW; Wagenbach M; Wordeman L
    J Cell Biol; 1998 Aug; 142(3):787-801. PubMed ID: 9700166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization.
    Pakala SB; Nair VS; Reddy SD; Kumar R
    J Biol Chem; 2012 Nov; 287(48):40560-9. PubMed ID: 23055517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition.
    Patel JT; Belsham HR; Rathbone AJ; Wickstead B; Gell C; Friel CT
    Open Biol; 2016 Oct; 6(10):. PubMed ID: 27733589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel.
    Ganguly A; Yang H; Cabral F
    Mol Cancer Ther; 2011 Jun; 10(6):929-37. PubMed ID: 21471284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends.
    Helenius J; Brouhard G; Kalaidzidis Y; Diez S; Howard J
    Nature; 2006 May; 441(7089):115-9. PubMed ID: 16672973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of MCAK degradation and removal from centromeres.
    Ganguly A; Bhattacharya R; Cabral F
    Cytoskeleton (Hoboken); 2012 May; 69(5):303-11. PubMed ID: 22422706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling study of kinesin-13 MCAK microtubule depolymerase.
    Xie P
    Eur Biophys J; 2024 Aug; 53(5-6):339-354. PubMed ID: 39093405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro.
    Newton CN; Wagenbach M; Ovechkina Y; Wordeman L; Wilson L
    FEBS Lett; 2004 Aug; 572(1-3):80-4. PubMed ID: 15304328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MCAK associates with the tips of polymerizing microtubules.
    Moore AT; Rankin KE; von Dassow G; Peris L; Wagenbach M; Ovechkina Y; Andrieux A; Job D; Wordeman L
    J Cell Biol; 2005 May; 169(3):391-7. PubMed ID: 15883193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK.
    Cooper JR; Wagenbach M; Asbury CL; Wordeman L
    Nat Struct Mol Biol; 2010 Jan; 17(1):77-82. PubMed ID: 19966798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of an immunosuppressant SQAG9 and determination of the binding peptide by T7 phage display.
    Yamazaki T; Aoki S; Ohta K; Hyuma S; Sakaguchi K; Sugawara F
    Bioorg Med Chem Lett; 2004 Aug; 14(16):4343-6. PubMed ID: 15261299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MCAK associates with EB1.
    Lee T; Langford KJ; Askham JM; Brüning-Richardson A; Morrison EE
    Oncogene; 2008 Apr; 27(17):2494-500. PubMed ID: 17968321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-termini of tubulin and the specific geometry of tubulin substrates influence the depolymerization activity of MCAK.
    Hertzer KM; Walczak CE
    Cell Cycle; 2008 Sep; 7(17):2727-37. PubMed ID: 18758237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK.
    Huang R; Oh H; Arrendale A; Martin VA; Galan J; Workman EJ; Stout JR; Walczak CE; Tao WA; Borch RF; Geahlen RL
    Biochem Pharmacol; 2013 Sep; 86(5):597-611. PubMed ID: 23830822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering protein function during mitosis in PtK cells using RNAi.
    Stout JR; Rizk RS; Kline SL; Walczak CE
    BMC Cell Biol; 2006 Jun; 7():26. PubMed ID: 16796742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.