BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 15853798)

  • 1. Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis.
    Shimo A; Tanikawa C; Nishidate T; Lin ML; Matsuda K; Park JH; Ueki T; Ohta T; Hirata K; Fukuda M; Nakamura Y; Katagiri T
    Cancer Sci; 2008 Jan; 99(1):62-70. PubMed ID: 17944972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover.
    Moon HH; Kreis NN; Friemel A; Roth S; Schulte D; Solbach C; Louwen F; Yuan J; Ritter A
    Cancers (Basel); 2021 Nov; 13(22):. PubMed ID: 34830827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCAK Inhibitors Induce Aneuploidy in Triple-Negative Breast Cancer Models.
    Smith JC; Husted S; Pilrose J; Ems-McClung SC; Stout JR; Carpenter RL; Walczak CE
    Cancers (Basel); 2023 Jun; 15(13):. PubMed ID: 37444419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside.
    Zhao K; Li X; Feng Y; Wang J; Yao W
    Biomark Res; 2024 Mar; 12(1):30. PubMed ID: 38433242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multimodal Molecular Imaging Study Evaluates Pharmacological Alteration of the Tumor Microenvironment to Improve Radiation Response.
    Takakusagi Y; Naz S; Takakusagi K; Ishima M; Murata H; Ohta K; Miura M; Sugawara F; Sakaguchi K; Kishimoto S; Munasinghe JP; Mitchell JB; Krishna MC
    Cancer Res; 2018 Dec; 78(24):6828-6837. PubMed ID: 30301838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients.
    Duan H; Zhang X; Wang FX; Cai MY; Ma GW; Yang H; Fu JH; Tan ZH; Fu XY; Ma QL; Wang XY; Lin P
    Oncotarget; 2016 Dec; 7(49):80493-80507. PubMed ID: 27563815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms.
    Zhang J; Li C; Yu G; Guan H
    Mar Drugs; 2014 Jun; 12(6):3634-59. PubMed ID: 24945415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization.
    Pakala SB; Nair VS; Reddy SD; Kumar R
    J Biol Chem; 2012 Nov; 287(48):40560-9. PubMed ID: 23055517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesins and cancer.
    Rath O; Kozielski F
    Nat Rev Cancer; 2012 Jul; 12(8):527-39. PubMed ID: 22825217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of activity and combination strategies with the microtubule-targeting drug sagopilone in breast cancer cell lines.
    Eschenbrenner J; Winsel S; Hammer S; Sommer A; Mittelstaedt K; Drosch M; Klar U; Sachse C; Hannus M; Seidel M; Weiss B; Merz C; Siemeister G; Hoffmann J
    Front Oncol; 2011; 1():44. PubMed ID: 22649765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target.
    Sanhaji M; Friel CT; Wordeman L; Louwen F; Yuan J
    Oncotarget; 2011 Dec; 2(12):935-47. PubMed ID: 22249213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.
    Morohashi K; Sahara H; Watashi K; Iwabata K; Sunoki T; Kuramochi K; Takakusagi K; Miyashita H; Sato N; Tanabe A; Shimotohno K; Kobayashi S; Sakaguchi K; Sugawara F
    PLoS One; 2011 Apr; 6(4):e18285. PubMed ID: 21559518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer.
    Nakamura Y; Tanaka F; Haraguchi N; Mimori K; Matsumoto T; Inoue H; Yanaga K; Mori M
    Br J Cancer; 2007 Aug; 97(4):543-9. PubMed ID: 17653072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An emulsion of sulfoquinovosylacylglycerol with long-chain alkanes increases its permeability to tumor cells.
    Aoki S; Ohta K; Matsumoto K; Sakai H; Abe M; Miura M; Sugawara F; Sakaguchi K
    J Membr Biol; 2006; 213(1):11-8. PubMed ID: 17347779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian mitotic centromere-associated kinesin (MCAK): a new molecular target of sulfoquinovosylacylglycerols novel antitumor and immunosuppressive agents.
    Aoki S; Ohta K; Yamazaki T; Sugawara F; Sakaguchi K
    FEBS J; 2005 May; 272(9):2132-40. PubMed ID: 15853798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity.
    Moore A; Wordeman L
    Biochem J; 2004 Oct; 383(Pt 2):227-35. PubMed ID: 15250824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K-loop insertion restores microtubule depolymerizing activity of a "neckless" MCAK mutant.
    Ovechkina Y; Wagenbach M; Wordeman L
    J Cell Biol; 2002 Nov; 159(4):557-62. PubMed ID: 12446739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.
    Maney T; Wagenbach M; Wordeman L
    J Biol Chem; 2001 Sep; 276(37):34753-8. PubMed ID: 11466324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the ATP-binding domain affect the subcellular distribution of mitotic centromere-associated kinesin (MCAK).
    Wordeman L; Wagenbach M; Maney T
    Cell Biol Int; 1999; 23(4):275-86. PubMed ID: 10600236
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.