These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15853799)

  • 41. Analysis of dynamic labeling data.
    Voit EO; Alvarez-Vasquez F; Sims KJ
    Math Biosci; 2004 Sep; 191(1):83-99. PubMed ID: 15312745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of time-varying biological systems from ensemble data.
    MacNeil JB; Kearney RE; Hunter IW
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1213-25. PubMed ID: 1487284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quasi-multiparameter sensitivity measure for robustness analysis of complex biochemical networks.
    Maeda K; Kurata H
    J Theor Biol; 2011 Mar; 272(1):174-86. PubMed ID: 21163268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of all steady states in large networks by logical analysis.
    Devloo V; Hansen P; Labbé M
    Bull Math Biol; 2003 Nov; 65(6):1025-51. PubMed ID: 14607287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orthogonal filtered recoupled-STOCSY to extract metabolic networks associated with minor perturbations from NMR spectroscopy.
    Blaise BJ; Navratil V; Emsley L; Toulhoat P
    J Proteome Res; 2011 Sep; 10(9):4342-8. PubMed ID: 21774548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Online reinforcement learning for dynamic multimedia systems.
    Mastronarde N; van der Schaar M
    IEEE Trans Image Process; 2010 Feb; 19(2):290-305. PubMed ID: 19884082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular networks: the top-down view.
    Bray D
    Science; 2003 Sep; 301(5641):1864-5. PubMed ID: 14512614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.
    Shiraishi F; Hatoh Y; Irie T
    J Theor Biol; 2005 May; 234(1):79-85. PubMed ID: 15721037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling genetic networks from clonal analysis.
    Nagarajan R; Aubin JE; Peterson CA
    J Theor Biol; 2004 Oct; 230(3):359-73. PubMed ID: 15302546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy.
    Andrec M; Kholodenko BN; Levy RM; Sontag E
    J Theor Biol; 2005 Feb; 232(3):427-41. PubMed ID: 15572066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells.
    Ni TC; Savageau MA
    J Theor Biol; 1996 Apr; 179(4):329-68. PubMed ID: 8763353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks.
    Wang J; Zhang K; Wang E
    J Chem Phys; 2010 Sep; 133(12):125103. PubMed ID: 20886967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Parameter space exploration within dynamic simulations of signaling networks.
    De Ambrosi C; Barla A; Tortolina L; Castagnino N; Pesenti R; Verri A; Ballestrero A; Patrone F; Parodi S
    Math Biosci Eng; 2013 Feb; 10(1):103-20. PubMed ID: 23311364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reducing complexity in metabolic networks: making metabolic meshes manageable.
    Palsson BO; Joshi A; Ozturk SS
    Fed Proc; 1987 Jun; 46(8):2485-9. PubMed ID: 3297796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Least-squares methods for identifying biochemical regulatory networks from noisy measurements.
    Kim J; Bates DG; Postlethwaite I; Heslop-Harrison P; Cho KH
    BMC Bioinformatics; 2007 Jan; 8():8. PubMed ID: 17212835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Global properties of biological networks.
    Grigorov MG
    Drug Discov Today; 2005 Mar; 10(5):365-72. PubMed ID: 15749285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-response analysis: a new experimental strategy for metabolic control analysis.
    Hofmeyr JH; Cornish-Bowden A
    J Theor Biol; 1996 Oct; 182(3):371-80. PubMed ID: 8944170
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of large metabolic responses. Constraints and sensitivity analysis.
    Acerenza L
    J Theor Biol; 2000 Nov; 207(2):265-82. PubMed ID: 11034833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic control design.
    Acerenza L
    J Theor Biol; 1993 Nov; 165(1):63-85. PubMed ID: 8264249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.