BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15853813)

  • 1. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis.
    Koebmann B; Solem C; Jensen PR
    FEBS J; 2005 May; 272(9):2292-303. PubMed ID: 15853813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose.
    Solem C; Koebmann B; Yang F; Jensen PR
    J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux.
    Andersen HW; Solem C; Hammer K; Jensen PR
    J Bacteriol; 2001 Jun; 183(11):3458-67. PubMed ID: 11344154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis.
    Andersen HW; Pedersen MB; Hammer K; Jensen PR
    Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.
    Llanos RM; Harris CJ; Hillier AJ; Davidson BE
    J Bacteriol; 1993 May; 175(9):2541-51. PubMed ID: 8478320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular properties and transcriptional control of the phosphofructokinase and pyruvate kinase genes in a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Kanada K; Hino T
    Anaerobe; 2008 Oct; 14(4):237-41. PubMed ID: 18565772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of gene expression made easy.
    Solem C; Jensen PR
    Appl Environ Microbiol; 2002 May; 68(5):2397-403. PubMed ID: 11976114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of 6-phosphofructokinase gene-pfk overexpression on nisin production in Lactococcus lactis N8].
    Zhu D; Zhao K; Xu H; Bai Y; Zhang X; Qiao M
    Wei Sheng Wu Xue Bao; 2015 Apr; 55(4):440-7. PubMed ID: 26211318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis.
    Ramos A; Neves AR; Ventura R; Maycock C; López P; Santos H
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1103-1111. PubMed ID: 15073320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
    Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T
    Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis.
    Solem C; Koebmann B; Jensen PR
    IET Syst Biol; 2008 Mar; 2(2):64-72. PubMed ID: 18397117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis.
    Boels IC; Kleerebezem M; de Vos WM
    Appl Environ Microbiol; 2003 Feb; 69(2):1129-35. PubMed ID: 12571039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of pyruvate metabolism in Lactococcus lactis.
    Melchiorsen CR; Jensen NB; Christensen B; Vaever Jokumsen K; Villadsen J
    Biotechnol Bioeng; 2001 Aug; 74(4):271-9. PubMed ID: 11410851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic?
    Gstraunthaler G; Seppi T; Pfaller W
    Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture.
    Papagianni M; Avramidis N; Filiousis G
    Microb Cell Fact; 2007 May; 6():16. PubMed ID: 17521452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis.
    Bongers RS; Hoefnagel MH; Starrenburg MJ; Siemerink MA; Arends JG; Hugenholtz J; Kleerebezem M
    J Bacteriol; 2003 Aug; 185(15):4499-507. PubMed ID: 12867459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.