BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 15854163)

  • 41. EDHF: an update.
    Félétou M; Vanhoutte PM
    Clin Sci (Lond); 2009 Jul; 117(4):139-55. PubMed ID: 19601928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats.
    Vettoretti S; Ochodnicky P; Buikema H; Henning RH; Kluppel CA; de Zeeuw D; van Dokkum RP
    J Hypertens; 2006 Nov; 24(11):2215-23. PubMed ID: 17053543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Endothelium-derived hyperpolarizing factor].
    Brăiloiu C; Beşchea-Chiriac C; Chiriac M
    Rev Med Chir Soc Med Nat Iasi; 1998; 102(3-4):49-55. PubMed ID: 10756843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The endothelium in health and in cardiovascular disease.
    Garćia-Palmieri MR
    P R Health Sci J; 1997 Jun; 16(2):136-41. PubMed ID: 9285990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Novel mechanism of vasodilatation].
    Ohashi J; Shimokawa H
    Nihon Rinsho; 2010 Apr; 68(4):631-5. PubMed ID: 20387553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apocynin normalizes hyperreactivity to phenylephrine in mesenteric arteries from cholesterol-fed mice by improving endothelium-derived hyperpolarizing factor response.
    Matsumoto T; Miyamori K; Kobayashi T; Kamata K
    Free Radic Biol Med; 2006 Oct; 41(8):1289-303. PubMed ID: 17015176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium-activated potassium channel and connexin expression in small mesenteric arteries from eNOS-deficient (eNOS-/-) and eNOS-expressing (eNOS+/+) mice.
    Ceroni L; Ellis A; Wiehler WB; Jiang YF; Ding H; Triggle CR
    Eur J Pharmacol; 2007 Apr; 560(2-3):193-200. PubMed ID: 17300779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s).
    McGuire JJ; Ding H; Triggle CR
    Can J Physiol Pharmacol; 2001 Jun; 79(6):443-70. PubMed ID: 11430583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation.
    López D; Rodríguez-Sinovas A; Agulló E; García A; Sánchez JA; García-Dorado D
    Exp Physiol; 2009 Oct; 94(10):1088-97. PubMed ID: 19617266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery.
    Ozkan MH; Uma S
    Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Endothelial functions in cardiovascular diseases].
    Mügge A; Förstermann U; Lichtlen PR
    Z Kardiol; 1989 Mar; 78(3):147-60. PubMed ID: 2652905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. C-type natriuretic peptide: new candidate for endothelium-derived hyperpolarising factor.
    Chauhan SD; Hobbs AJ; Ahluwalia A
    Int J Biochem Cell Biol; 2004 Oct; 36(10):1878-81. PubMed ID: 15203101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Angiotensin II-induced hypertension is associated with a selective inhibition of endothelium-derived hyperpolarizing factor-mediated responses in the rat mesenteric artery.
    Dal-Ros S; Bronner C; Schott C; Kane MO; Chataigneau M; Schini-Kerth VB; Chataigneau T
    J Pharmacol Exp Ther; 2009 Feb; 328(2):478-86. PubMed ID: 18984652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endothelin receptor-mediated vasodilatation: effects of organ culture.
    Nilsson D; Wackenfors A; Gustafsson L; Ugander M; Paulsson P; Ingemansson R; Edvinsson L; Malmsjö M
    Eur J Pharmacol; 2008 Jan; 579(1-3):233-40. PubMed ID: 17964568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats.
    Nakazawa T; Kaneko Y; Mori A; Saito M; Sakamoto K; Nakahara T; Ishii K
    Vascul Pharmacol; 2007 Mar; 46(3):153-9. PubMed ID: 17079193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats.
    Matsumoto T; Kobayashi T; Kamata K
    Eur J Pharmacol; 2006 May; 538(1-3):132-40. PubMed ID: 16678154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Endothelial function and the microcirculation in diabetes mellitus].
    Arosio E; Minuz P; Prior M
    Ann Ital Med Int; 1999; 14(2):106-13. PubMed ID: 10399372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Communication between endothelial and smooth muscle cells].
    Félétou M; Busse R; Edwards G; Fleming I; Weston AH; Vanhoutte PM
    Med Sci (Paris); 2003 Dec; 19(12):1242-50. PubMed ID: 14691749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin.
    Bryan RM; You J; Golding EM; Marrelli SP
    Anesthesiology; 2005 Jun; 102(6):1261-77. PubMed ID: 15915041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diabetes impairs endothelium-dependent relaxation of human penile vascular tissues mediated by NO and EDHF.
    Angulo J; Cuevas P; Fernández A; Gabancho S; Allona A; Martín-Morales A; Moncada I; Videla S; Sáenz de Tejada I
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1202-8. PubMed ID: 14652001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.