These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15854213)

  • 1. Off-design considerations of the 50cc Penn State Ventricular Assist Device.
    Oley LA; Manning KB; Fontaine AA; Deutsch S
    Artif Organs; 2005 May; 29(5):378-86. PubMed ID: 15854213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 50cc Penn State left ventricular assist device: a parametric study of valve orientation flow dynamics.
    Kreider JW; Manning KB; Oley LA; Fontaine AA; Deutsch S
    ASAIO J; 2006; 52(2):123-31. PubMed ID: 16557096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
    Manning KB; Wivholm BD; Yang N; Fontaine AA; Deutsch S
    Artif Organs; 2008 Jun; 32(6):442-52. PubMed ID: 18422800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parametric study of valve orientation on the flow patterns of the Penn State pulsatile pediatric ventricular assist device.
    Roszelle BN; Deutsch S; Manning KB
    ASAIO J; 2010; 56(4):356-63. PubMed ID: 20559131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study.
    Shi L; He Z
    J Biomech Eng; 2009 May; 131(5):051010. PubMed ID: 19388780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 12 cc Penn State pulsatile pediatric ventricular assist device: flow field observations at a reduced beat rate with application to weaning.
    Roszelle BN; Cooper BT; Long TC; Deutsch S; Manning KB
    ASAIO J; 2008; 54(3):325-31. PubMed ID: 18496284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Reynolds stresses within the Penn State left ventricular assist device.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    ASAIO Trans; 1990; 36(3):M274-8. PubMed ID: 2252676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.
    Slaughter MS; Sobieski MA; Koenig SC; Pappas PS; Tatooles AJ; Silver MA
    ASAIO J; 2006; 52(3):228-33. PubMed ID: 16760709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The test of mean flow velocity patterns within a new push-plate ventricular assist device].
    Pan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Mar; 15(1):34-7. PubMed ID: 12549350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry.
    Leo HL; Dasi LP; Carberry J; Simon HA; Yoganathan AP
    Ann Biomed Eng; 2006 Jun; 34(6):936-52. PubMed ID: 16783650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive aortic pressure observer for the Penn State Electric Ventricular Assist Device.
    Tasch U; Koontz JW; Ignatoski MA; Geselowitz DB
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):374-83. PubMed ID: 2338350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative blood damage in the three phases of a prosthetic heart valve flow cycle.
    Lamson TC; Rosenberg G; Geselowitz DB; Deutsch S; Stinebring DR; Frangos JA; Tarbell JM
    ASAIO J; 1993; 39(3):M626-33. PubMed ID: 8268614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical heart valve performance in a pulsatile pediatric ventricular assist device.
    Zapanta CM; Dourte LM; Doxtater BJ; Lukic B; Weiss WJ
    ASAIO J; 2007; 53(1):87-96. PubMed ID: 17237654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressures generated within the chambers of the MagScrew TAH: an in vitro study.
    Flick CR; Weber S; Luangphakdy V; Klatte RS; Fukamachi K; Smith WA
    ASAIO J; 2008; 54(1):58-63. PubMed ID: 18204317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle image velocimetry for flow analysis in longitudinal planes across a mechanical artificial heart valve.
    Castellini P; Pinotti M; Scalise L
    Artif Organs; 2004 May; 28(5):507-13. PubMed ID: 15113347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.