These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 1585424)

  • 1. Immunorestorative properties of ST 789 on experimentally immunosuppressed and infected mice.
    Foresta P; Riccardi C; Martelli EA
    Thymus; 1992; 19 Suppl 1():S97-107. PubMed ID: 1585424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of amphotericin-B therapeutic efficacy at half doses by synergistic activation of phagocytes.
    Cornaglia-Ferraris P; Rossi E; Perezzani L; Stradi R
    Cancer Detect Prev; 1991; 15(4):327-9. PubMed ID: 1794140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ST789: a new synthetic immunomodulator.
    De Simone C; Martelli EA
    Thymus; 1992; 19 Suppl 1():S1-5. PubMed ID: 1585415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo immunomodulatory activity of ST 789 on two human lymphoblastic T cell lines.
    Jemma C; Giovarelli M; Vai S; Cavallo F; Forni G
    Thymus; 1992; 19 Suppl 1():S79-87. PubMed ID: 1533965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ST 789 on human neutrophil function in vitro.
    Patrone F; Dallegri F; Ottonello L; Ballestrero A; Bogliolo F; Ferrando F; Sacchetti C
    Thymus; 1992; 19 Suppl 1():S89-96. PubMed ID: 1316649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro activation of murine peritoneal exudate cells (PEC) and peritoneal macrophages by ST 789.
    Foresta P; Ruggiero V; Albertoni C; Pacello L; Leoni B; Arrigoni Martelli E
    Int J Immunopharmacol; 1992 Aug; 14(6):1061-8. PubMed ID: 1428361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic biological response modifiers; Part 1. Synthesis and immunomodulatory properties of some N2-(omega-(hypoxanthin-9-yl)alkoxycarbonyl)-L-arginines.
    Stradi R; Rossi E; Perezzani L; Migliorati G; Riccardi C; Cornaglia G; Ferraris
    Farmaco; 1990 Jan; 45(1):39-47. PubMed ID: 2337446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunopharmacology of ST 789.
    Thymus; 1992; 19 Suppl 1():S1-112. PubMed ID: 1585414
    [No Abstract]   [Full Text] [Related]  

  • 9. Modulation of splenic lymphocyte activities by a new hypoxanthine derivative (ST 789) in immunosuppressed mice.
    Ruggiero V; Albertoni C; Manganello S; Foresta P; Martelli EA
    Agents Actions Suppl; 1991; 32():171-8. PubMed ID: 2069086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model.
    Khan MA; Owais M
    J Antimicrob Chemother; 2006 Jul; 58(1):125-32. PubMed ID: 16709592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo antitumor activity of the hypoxanthine derivatives ST 789 and ST 689.
    De Simone C; Famularo G; Foresta P; Albertoni C; Arrigoni Martelli E
    Ann N Y Acad Sci; 1993 Jun; 685():344-6. PubMed ID: 8363238
    [No Abstract]   [Full Text] [Related]  

  • 12. Cryptosporidium parvum infection in experimentally infected mice: infection dynamics and effect of immunosuppression.
    Tarazona R; Blewett DA; Carmona MD
    Folia Parasitol (Praha); 1998; 45(2):101-7. PubMed ID: 9684319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of aminocandin (IP960) compared with amphotericin B and fluconazole in a neutropenic murine model of disseminated infection caused by a fluconazole-resistant strain of Candida tropicalis.
    Warn PA; Sharp A; Morrissey G; Denning DW
    J Antimicrob Chemother; 2005 Sep; 56(3):590-3. PubMed ID: 16046462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An experimental study of the therapeutic effect of interleukin-2 and interleukin-12 with and without amphotericin B on pulmonary fungal infection].
    Zhang CR; Tang YC; Kawakami K; Zhang TT; Zhang KX; Zhu JX
    Zhonghua Jie He He Hu Xi Za Zhi; 2004 Apr; 27(4):234-6. PubMed ID: 15144612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance to amphotericin B in clinical isolates of Candida tropicalis.
    Barchiesi F; Maracci M; Baldassarri I; Spreghini E; Giannini D; Scalise G
    Diagn Microbiol Infect Dis; 2004 Nov; 50(3):179-85. PubMed ID: 15541603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Host defense mechanism in experimentally immunocompromised animals and restorative effect of immunopotentiators].
    Yokota Y
    Nihon Saikingaku Zasshi; 1984 Jan; 39(1):29-46. PubMed ID: 6748217
    [No Abstract]   [Full Text] [Related]  

  • 17. Evaluation of in vitro and in vivo antimicrobial activity of a new topical antiinfective agent.
    D'Urso CM; Gramiccioli G; Mirri S; Foresta P; Arrigoni Martelli E
    Drugs Exp Clin Res; 1995; 21(2):65-70. PubMed ID: 7555611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunomodulatory effects of arginine butyrate.
    Bergeret M; Cerutti I; Gregoire A; Tardivel I; Chany C
    J Biol Regul Homeost Agents; 1987; 1(4):183-8. PubMed ID: 3140599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study the mechanisms and inducing transplantation immune tolerance of FTY720].
    Zhang L; Zhu T; Sun EW; Shen SQ; Guo H; Min ZL; Chen ZH
    Zhonghua Wai Ke Za Zhi; 2003 Oct; 41(10):773-7. PubMed ID: 14766054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase.
    Loeffler M; Krüger JA; Reisfeld RA
    Cancer Res; 2005 Jun; 65(12):5027-30. PubMed ID: 15958544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.