These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15854659)

  • 1. Folding and stability of a primitive protein.
    Riechmann L; Lavenir I; de Bono S; Winter G
    J Mol Biol; 2005 May; 348(5):1261-72. PubMed ID: 15854659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A native-like artificial protein from antisense DNA.
    Fischer N; Riechmann L; Winter G
    Protein Eng Des Sel; 2004 Jan; 17(1):13-20. PubMed ID: 14985533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of domain swapping to kinetic stability in a thioredoxin mutant.
    Garcia-Pino A; Martinez-Rodriguez S; Wahni K; Wyns L; Loris R; Messens J
    J Mol Biol; 2009 Feb; 385(5):1590-9. PubMed ID: 19071139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and energy landscape of domain swapping in the B1 domain of protein G.
    Malevanets A; Sirota FL; Wodak SJ
    J Mol Biol; 2008 Sep; 382(1):223-35. PubMed ID: 18588900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HPr proteins from the thermophile Bacillus stearothermophilus can form domain-swapped dimers.
    Sridharan S; Razvi A; Scholtz JM; Sacchettini JC
    J Mol Biol; 2005 Feb; 346(3):919-31. PubMed ID: 15713472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A captured folding intermediate involved in dimerization and domain-swapping of GB1.
    Byeon IJ; Louis JM; Gronenborn AM
    J Mol Biol; 2004 Jul; 340(3):615-25. PubMed ID: 15210358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A folding pathway for betapep-4 peptide 33mer: from unfolded monomers and beta-sheet sandwich dimers to well-structured tetramers.
    Mayo KH; Ilyina E
    Protein Sci; 1998 Feb; 7(2):358-68. PubMed ID: 9521112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of oligomeric stability by covalent linkage and its application to the human p53tet domain: thermodynamics and biological implications.
    Poon GM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1574-8. PubMed ID: 18031269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of mechanism, variation of rate: folding kinetics of three homologous four-helix bundle proteins.
    Dalal S; Canet D; Kaiser SE; Dobson CM; Regan L
    Protein Eng Des Sel; 2008 Mar; 21(3):197-206. PubMed ID: 18299293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic repacking of the dimer interface of triosephosphate isomerase by in silico design and directed evolution.
    Peimbert M; Domínguez-Ramírez L; Fernández-Velasco DA
    Biochemistry; 2008 May; 47(20):5556-64. PubMed ID: 18439027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D domain swapping, protein oligomerization, and amyloid formation.
    Jaskólski M
    Acta Biochim Pol; 2001; 48(4):807-27. PubMed ID: 11995994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of lambda Cro fold: solution structure of a monomeric variant of the de novo protein.
    Isogai Y; Ito Y; Ikeya T; Shiro Y; Ota M
    J Mol Biol; 2005 Dec; 354(4):801-14. PubMed ID: 16289118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
    Saint-Jean AP; Phillips KR; Creighton DJ; Stone MJ
    Biochemistry; 1998 Jul; 37(29):10345-53. PubMed ID: 9671502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Alzheimer's A beta peptide with an engineered binding protein--thermodynamics and kinetics of coupled folding-binding.
    Hoyer W; Härd T
    J Mol Biol; 2008 Apr; 378(2):398-411. PubMed ID: 18358490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folding mechanism of a dimeric beta-barrel domain.
    de Prat-Gay G; Nadra AD; Corrales-Izquierdo FJ; Alonso LG; Ferreiro DU; Mok YK
    J Mol Biol; 2005 Aug; 351(3):672-82. PubMed ID: 16023675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.