These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15854718)

  • 41. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of the bioluminescent bacterium Vibrio harveyi to detect biohazardous chemicals in soil and water extractions with and without acid.
    Thomulka KW; Lange JH
    Ecotoxicol Environ Saf; 1995 Nov; 32(2):201-4. PubMed ID: 8575367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.
    Chen H; Gao B; Li H; Ma LQ
    J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional nickel ion transport through porous media using magnetic resonance imaging.
    Herrmann KH; Pohlmeier A; Wiese S; Shah NJ; Nitzsche ; Vereecken H
    J Environ Qual; 2002; 31(2):506-14. PubMed ID: 11931441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradation during contaminant transport in porous media: 3. Apparent condition-dependency of growth-related coefficients.
    Li L; Yolcubal I; Sandrin S; Hu MQ; Brusseau ML
    J Contam Hydrol; 2001 Aug; 50(3-4):209-23. PubMed ID: 11523325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactive solute transport in macroscopically homogeneous porous media: analytical solutions for the temporal moments.
    Srivastava R; Sharma PK; Brusseau ML
    J Contam Hydrol; 2004 Mar; 69(1-2):27-43. PubMed ID: 14972436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Linear exchange model for the description of mass transfer limited bioavailability at the pore scale.
    Hesse F; Harms H; Attinger S; Thullner M
    Environ Sci Technol; 2010 Mar; 44(6):2064-71. PubMed ID: 20175545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes.
    Bauer RD; Rolle M; Bauer S; Eberhardt C; Grathwohl P; Kolditz O; Meckenstock RU; Griebler C
    J Contam Hydrol; 2009 Feb; 105(1-2):56-68. PubMed ID: 19095328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and validation of a model of bio-barriers for remediation of Cr(VI) contaminated aquifers using laboratory column experiments.
    Shashidhar T; Bhallamudi SM; Philip L
    J Hazard Mater; 2007 Jul; 145(3):437-52. PubMed ID: 17161527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
    Johari WL; Diamessis PJ; Lion LW
    Water Res; 2010 Feb; 44(4):1028-37. PubMed ID: 19406449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradation during contaminant transport in porous media: V. The influence of growth and cell elution on microbial distribution.
    Yolcubal I; Pierce SA; Maier RM; Brusseau ML
    J Environ Qual; 2002; 31(6):1824-30. PubMed ID: 12469831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modelling reactive CAH transport using batch experiment degradation kinetics.
    Haest PJ; Springael D; Smolders E
    Water Res; 2010 May; 44(9):2981-9. PubMed ID: 20303564
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model for contaminant mass flux in capped sediment under consolidation.
    Alshawabkeh AN; Rahbar N; Sheahan T
    J Contam Hydrol; 2005 Jul; 78(3):147-65. PubMed ID: 16005541
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity.
    Chen JS; Liu CW
    J Contam Hydrol; 2004 Aug; 72(1-4):47-66. PubMed ID: 15240166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport and biotransformation of organic carbon and nitrate compounds in unsaturated soil conditions.
    Bunsri T; Sivakumar M; Hagare D
    Water Sci Technol; 2008; 58(11):2143-53. PubMed ID: 19092190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A universal nutrient application strategy for the bioremediation of oil-polluted beaches.
    Li H; Zhao Q; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2007 Aug; 54(8):1146-61. PubMed ID: 17588615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating the change of porosity in the saturated zone during air sparging.
    Tsai YJ; Kuo YC; Chen TC; Chou FC
    J Environ Sci (China); 2006; 18(4):675-9. PubMed ID: 17078545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field.
    Thullner M; Schroth MH; Zeyer J; Kinzelbach W
    J Contam Hydrol; 2004 May; 70(1-2):37-62. PubMed ID: 15068868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.