These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
647 related articles for article (PubMed ID: 15854725)
1. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725 [TBL] [Abstract][Full Text] [Related]
2. Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area. Byun DW; Kim S; Czader B; Nowak D; Stetson S; Estes M J Environ Manage; 2005 Jun; 75(4):285-301. PubMed ID: 15854724 [TBL] [Abstract][Full Text] [Related]
3. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China. Wang Q; Han Z; Wang T; Zhang R Sci Total Environ; 2008 May; 395(1):41-9. PubMed ID: 18329698 [TBL] [Abstract][Full Text] [Related]
4. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone. Nghiem le H; Kim Oanh NT J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States. Odman MT; Hu Y; Russell AG; Hanedar A; Boylan JW; Brewer PF J Environ Manage; 2009 Jul; 90(10):3155-68. PubMed ID: 19556055 [TBL] [Abstract][Full Text] [Related]
7. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan. Chang KH; Chen TF; Huang HC Sci Total Environ; 2005 Jun; 346(1-3):184-99. PubMed ID: 15993693 [TBL] [Abstract][Full Text] [Related]
8. Air quality modeling for Houston-Galveston-Brazoria area. Aloyan AE; Arutyunyan V; Haymet AD; He JW; Kuznetsov Y; Lubertino G Environ Int; 2003 Jun; 29(2-3):377-83. PubMed ID: 12676230 [TBL] [Abstract][Full Text] [Related]
9. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Toro MV; Cremades LV; Calbó J Chemosphere; 2006 Oct; 65(5):881-8. PubMed ID: 16631888 [TBL] [Abstract][Full Text] [Related]
10. The relationship between volatile organic profiles and emission sources in ozone episode region-a case study in Southern Taiwan. Tsai JH; Hsu YC; Yang JY Sci Total Environ; 2004 Jul; 328(1-3):131-42. PubMed ID: 15207579 [TBL] [Abstract][Full Text] [Related]
11. Photochemical model evaluation of the surface ozone impact of a power plant in a heavily industrialized area of southwestern Spain. Castell N; Mantilla E; Salvador R; Stein AF; Millán M J Environ Manage; 2010; 91(3):662-76. PubMed ID: 19853365 [TBL] [Abstract][Full Text] [Related]
12. Process analysis of typical summertime ozone episodes over the Beijing area. Xu J; Zhang Y; Fu JS; Zheng S; Wang W Sci Total Environ; 2008 Jul; 399(1-3):147-57. PubMed ID: 18455756 [TBL] [Abstract][Full Text] [Related]
13. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation. Wang L; Thompson T; McDonald-Buller EC; Webb A; Allen DT Environ Sci Technol; 2007 Apr; 41(7):2095-102. PubMed ID: 17438748 [TBL] [Abstract][Full Text] [Related]
14. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions. Tie X; Li G; Ying Z; Guenther A; Madronich S Sci Total Environ; 2006 Dec; 371(1-3):238-51. PubMed ID: 17027064 [TBL] [Abstract][Full Text] [Related]
15. Spatial and temporal trend evaluation of ambient concentrations of 1,3-butadiene and chloroprene in Texas. Grant RL; Leopold V; McCant D; Honeycutt M Chem Biol Interact; 2007 Mar; 166(1-3):44-51. PubMed ID: 17011534 [TBL] [Abstract][Full Text] [Related]
16. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul. Im U; Poupkou A; Incecik S; Markakis K; Kindap T; Unal A; Melas D; Yenigun O; Topcu S; Odman MT; Tayanc M; Guler M Sci Total Environ; 2011 Mar; 409(7):1255-65. PubMed ID: 21257192 [TBL] [Abstract][Full Text] [Related]
17. Allocating anthropogenic pollutant emissions over space: application to ozone pollution management. Diem JE; Comrie AC J Environ Manage; 2001 Dec; 63(4):425-47. PubMed ID: 11826724 [TBL] [Abstract][Full Text] [Related]
18. Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production. Shao M; Zhang Y; Zeng L; Tang X; Zhang J; Zhong L; Wang B J Environ Manage; 2009 Jan; 90(1):512-8. PubMed ID: 18207632 [TBL] [Abstract][Full Text] [Related]
19. Impact of wildfires on ozone exceptional events in the Western u.s. Jaffe DA; Wigder N; Downey N; Pfister G; Boynard A; Reid SB Environ Sci Technol; 2013 Oct; 47(19):11065-72. PubMed ID: 23980897 [TBL] [Abstract][Full Text] [Related]
20. Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2). Jiménez P; Parra R; Baldasano JM J Air Waste Manag Assoc; 2005 Aug; 55(8):1085-99. PubMed ID: 16187579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]