BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 15854847)

  • 1. Assimilating intraoperative data with brain shift modeling using the adjoint equations.
    Lunn KE; Paulsen KD; Lynch DR; Roberts DW; Kennedy FE; Hartov A
    Med Image Anal; 2005 Jun; 9(3):281-93. PubMed ID: 15854847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth.
    Zacharaki EI; Hogea CS; Shen D; Biros G; Davatzikos C
    Neuroimage; 2009 Jul; 46(3):762-74. PubMed ID: 19408350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast and efficient method to compensate for brain shift for tumor resection therapies measured between preoperative and postoperative tomograms.
    Dumpuri P; Thompson RC; Cao A; Ding S; Garg I; Dawant BM; Miga MI
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1285-96. PubMed ID: 20172796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical surface registration for image-guided neurosurgery using laser-range scanning.
    Miga MI; Sinha TK; Cash DM; Galloway RL; Weil RJ
    IEEE Trans Med Imaging; 2003 Aug; 22(8):973-85. PubMed ID: 12906252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inverse problem approach to the estimation of volume change.
    Schweiger M; Camara-Rey O; Crum WR; Lewis E; Schnabel J; Arridge SR; Hill DL; Fox N
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):616-23. PubMed ID: 16686011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generative approach for image-based modeling of tumor growth.
    Menze BH; Van Leemput K; Honkela A; Konukoglu E; Weber MA; Ayache N; Golland P
    Inf Process Med Imaging; 2011; 22():735-47. PubMed ID: 21761700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Imaging to Compensate for Soft-Tissue Deformations in Image-Guided Breast Conserving Surgery.
    Richey WL; Heiselman JS; Ringel MJ; Meszoely IM; Miga MI
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3760-3771. PubMed ID: 35604993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects.
    Hogea C; Davatzikos C; Biros G
    J Math Biol; 2008 Jun; 56(6):793-825. PubMed ID: 18026731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
    Sun K; Pheiffer TS; Simpson AL; Weis JA; Thompson RC; Miga MI
    IEEE J Transl Eng Health Med; 2014 Apr; 2():. PubMed ID: 25914864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-Based Image Updating for Brain Shift in Deep Brain Stimulation Electrode Placement Surgery.
    Li C; Fan X; Hong J; Roberts DW; Aronson JP; Paulsen KD
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3542-3552. PubMed ID: 32340934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery.
    Bayer S; Maier A; Ostermeier M; Fahrig R
    Int J Biomed Imaging; 2017; 2017():6028645. PubMed ID: 28676821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative image updating for brain shift following dural opening.
    Fan X; Roberts DW; Schaewe TJ; Ji S; Holton LH; Simon DA; Paulsen KD
    J Neurosurg; 2017 Jun; 126(6):1924-1933. PubMed ID: 27611206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative fiducial-less patient registration using volumetric 3D ultrasound: a prospective series of 32 neurosurgical cases.
    Fan X; Roberts DW; Ji S; Hartov A; Paulsen KD
    J Neurosurg; 2015 Sep; 123(3):721-31. PubMed ID: 26140481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereovision to MR image registration for cortical surface displacement mapping to enhance image-guided neurosurgery.
    Fan X; Ji S; Hartov A; Roberts DW; Paulsen KD
    Med Phys; 2014 Oct; 41(10):102302. PubMed ID: 25281972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of conoscopic holography for estimating tumor resection cavities in model-based image-guided neurosurgery.
    Simpson AL; Sun K; Pheiffer TS; Rucker DC; Sills AK; Thompson RC; Miga MI
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1833-43. PubMed ID: 24845293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown.
    Valdés PA; Moses ZB; Kim A; Belden CJ; Wilson BC; Paulsen KD; Roberts DW; Harris BT
    J Neuropathol Exp Neurol; 2012 Sep; 71(9):806-13. PubMed ID: 22878664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric intraoperative brain deformation compensation: model development and phantom validation.
    DeLorenzo C; Papademetris X; Staib LH; Vives KP; Spencer DD; Duncan JS
    IEEE Trans Med Imaging; 2012 Aug; 31(8):1607-19. PubMed ID: 22562728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial FEM/XFEM-Based Update of Preoperative Brain Images Using Intraoperative MRI.
    Vigneron LM; Noels L; Warfield SK; Verly JG; Robe PA
    Int J Biomed Imaging; 2012; 2012():872783. PubMed ID: 22287953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy.
    Valdés PA; Kim A; Brantsch M; Niu C; Moses ZB; Tosteson TD; Wilson BC; Paulsen KD; Roberts DW; Harris BT
    Neuro Oncol; 2011 Aug; 13(8):846-56. PubMed ID: 21798847
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.