BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15855029)

  • 1. Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition.
    Lukashkin AN; Russell IJ
    Hear Res; 2005 May; 203(1-2):45-53. PubMed ID: 15855029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum primary tone level setting for measuring high amplitude DPOAEs in guinea pigs.
    Michaelis CE; Gehr DD; Deingruber K; Arnold W; Lamm K
    Hear Res; 2004 Mar; 189(1-2):58-62. PubMed ID: 14987752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of a single saturating non-linearity account for post-onset changes in 2f1-f2 distortion product otoacoustic emission.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2002 Oct; 112(4):1561-8. PubMed ID: 12398462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of infrasound on the human cochlea.
    Hensel J; Scholz G; Hurttig U; Mrowinski D; Janssen T
    Hear Res; 2007 Nov; 233(1-2):67-76. PubMed ID: 17761395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions.
    Johannesen PT; Lopez-Poveda EA
    J Acoust Soc Am; 2008 Oct; 124(4):2149-63. PubMed ID: 19062855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of short-term tone exposure on DPOAEs].
    Shi Y; Jiang S; Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Feb; 32(1):41-4. PubMed ID: 10743127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones.
    Bian L; Chen S
    J Acoust Soc Am; 2011 Feb; 129(2):828-39. PubMed ID: 21361441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans.
    Drexl M; Gürkov R; Krause E
    Hear Res; 2012 May; 287(1-2):91-101. PubMed ID: 22465462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on DPOAE of guinea pigs treated with gentamicin].
    Ye L; Tao Z; Hua Q; Xiao B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):57-60. PubMed ID: 18435257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions.
    Drexl M; Henke J; Kössl M
    Hear Res; 2004 Aug; 194(1-2):135-42. PubMed ID: 15276684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameters to maximize 2f2-f1 distortion product otoacoustic emission levels.
    Horn JH; Pratt SR; Durrant JD
    J Speech Lang Hear Res; 2008 Dec; 51(6):1620-9. PubMed ID: 18664689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
    Bobbin RP; Salt AN
    Hear Res; 2005 Jul; 205(1-2):35-43. PubMed ID: 15953513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice.
    Lukashkin AN; Lukashkina VA; Legan PK; Richardson GP; Russell IJ
    J Neurophysiol; 2004 Jan; 91(1):163-71. PubMed ID: 14523068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.