These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15855682)

  • 1. The isocapnic buffering phase and mechanical efficiency: relationship to cycle time trial performance of short and long duration.
    Bentley DJ; Vleck VE; Millet GP
    Can J Appl Physiol; 2005 Feb; 30(1):46-60. PubMed ID: 15855682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance.
    Bentley DJ; McNaughton LR
    J Sci Med Sport; 2003 Dec; 6(4):422-35. PubMed ID: 14723392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological variables at lactate threshold under-represent cycling time-trial intensity.
    Kenefick RW; Mattern CO; Mahood NV; Quinn TJ
    J Sports Med Phys Fitness; 2002 Dec; 42(4):396-402. PubMed ID: 12391432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in professional cyclists.
    Chicharro JL; Hoyos J; Lucía A
    Br J Sports Med; 2000 Dec; 34(6):450-5. PubMed ID: 11131234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak power output, the lactate threshold, and time trial performance in cyclists.
    Bentley DJ; McNaughton LR; Thompson D; Vleck VE; Batterham AM
    Med Sci Sports Exerc; 2001 Dec; 33(12):2077-81. PubMed ID: 11740302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological determinants of the cycling time trial.
    Støren Ø; Ulevåg K; Larsen MH; Støa EM; Helgerud J
    J Strength Cond Res; 2013 Sep; 27(9):2366-73. PubMed ID: 23238091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between isocapnic buffering and maximal aerobic capacity in athletes.
    Oshima Y; Miyamoto T; Tanaka S; Wadazumi T; Kurihara N; Fujimoto S
    Eur J Appl Physiol Occup Physiol; 1997; 76(5):409-14. PubMed ID: 9367280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase.
    Hasanli M; Nikooie R; Aveseh M; Mohammad F
    J Strength Cond Res; 2015 Feb; 29(2):321-9. PubMed ID: 25144132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance.
    Hopker JG; Coleman DA; Gregson HC; Jobson SA; Von der Haar T; Wiles J; Passfield L
    J Appl Physiol (1985); 2013 Sep; 115(5):723-9. PubMed ID: 23813527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical power is related to cycling time trial performance.
    Smith JC; Dangelmaier BS; Hill DW
    Int J Sports Med; 1999 Aug; 20(6):374-8. PubMed ID: 10496116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of endurance training on different mechanical efficiency indices during submaximal cycling in subjects unaccustomed to cycling.
    Hintzy F; Mourot L; Perrey S; Tordi N
    Can J Appl Physiol; 2005 Oct; 30(5):520-8. PubMed ID: 16293901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aging and training status on ventilatory response during incremental cycling exercise.
    Lenti M; De Vito G; Scotto di Palumbo A; Sbriccoli P; Quattrini FM; Sacchetti M
    J Strength Cond Res; 2011 May; 25(5):1326-32. PubMed ID: 21273913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes.
    Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C
    J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise.
    Dobashi K; Fujii N; Watanabe K; Tsuji B; Sasaki Y; Fujimoto T; Tanigawa S; Nishiyasu T
    Eur J Appl Physiol; 2017 Aug; 117(8):1573-1583. PubMed ID: 28527012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists.
    Lamberts RP; Lambert MI; Swart J; Noakes TD
    Br J Sports Med; 2012 Jan; 46(1):36-41. PubMed ID: 21821613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests.
    Coakley SL; Passfield L
    J Sports Sci; 2018 Jun; 36(11):1228-1234. PubMed ID: 28892462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of the predictive validity and reliability of ventilatory threshold.
    Amann M; Subudhi AW; Walker J; Eisenman P; Shultz B; Foster C
    Med Sci Sports Exerc; 2004 Oct; 36(10):1716-22. PubMed ID: 15595292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plasma lactate response to exercise and endurance performance: relationships in elite triathletes.
    Hoogeveen AR; Schep G
    Int J Sports Med; 1997 Oct; 18(7):526-30. PubMed ID: 9414076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes.
    Urhausen A; Gabriel HH; Weiler B; Kindermann W
    Int J Sports Med; 1998 Feb; 19(2):114-20. PubMed ID: 9562220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.