These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15855682)
81. The Physiological Profile of a Multiple Tour de France Winning Cyclist. Bell PG; Furber MJ; VAN Someren KA; Antón-Solanas A; Swart J Med Sci Sports Exerc; 2017 Jan; 49(1):115-123. PubMed ID: 27508883 [TBL] [Abstract][Full Text] [Related]
82. A comparison of the cycling performance of cyclists and triathletes. Laursen PB; Shing CM; Tennant SC; Prentice CM; Jenkins DG J Sports Sci; 2003 May; 21(5):411-8. PubMed ID: 12800863 [TBL] [Abstract][Full Text] [Related]
83. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise. Grossl T; de Lucas RD; de Souza KM; Guglielmo LG Appl Physiol Nutr Metab; 2012 Dec; 37(6):1047-53. PubMed ID: 22891876 [TBL] [Abstract][Full Text] [Related]
84. Seasonal changes in aerobic fitness indices in elite cyclists. Sassi A; Impellizzeri FM; Morelli A; Menaspà P; Rampinini E Appl Physiol Nutr Metab; 2008 Aug; 33(4):735-42. PubMed ID: 18641717 [TBL] [Abstract][Full Text] [Related]
85. Anaerobic capacity: effect of computational method. Noordhof DA; Vink AM; de Koning JJ; Foster C Int J Sports Med; 2011 Jun; 32(6):422-8. PubMed ID: 21563025 [TBL] [Abstract][Full Text] [Related]
86. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. Vaiksaar S; Jürimäe J; Mäestu J; Purge P; Kalytka S; Shakhlina L; Jürimäe T J Strength Cond Res; 2011 Jun; 25(6):1571-8. PubMed ID: 21399539 [TBL] [Abstract][Full Text] [Related]
87. Strong relationship between heart rate deflection point and ventilatory threshold in trained rowers. Mikulic P; Vucetic V; Sentija D J Strength Cond Res; 2011 Feb; 25(2):360-6. PubMed ID: 20040892 [TBL] [Abstract][Full Text] [Related]
88. Evaluation of relationship between aerobic fitness level and range of isocapnic buffering periods during incremental exercise test. Algul S; Ozcelik O; Yilmaz B Cell Mol Biol (Noisy-le-grand); 2017 Mar; 63(3):78-82. PubMed ID: 28466818 [TBL] [Abstract][Full Text] [Related]
89. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Palmer GS; Noakes TD; Hawley JA Med Sci Sports Exerc; 1997 May; 29(5):684-7. PubMed ID: 9140907 [TBL] [Abstract][Full Text] [Related]
90. Correlation of gas exchange threshold and first muscle oxyhemoglobin inflection point with time-to-exhaustion during heavy-intensity exercise. Coquart JB; Mucci P; L'hermette M; Chamari K; Tourny C; Garcin M J Sports Med Phys Fitness; 2017 Mar; 57(3):171-178. PubMed ID: 26658433 [TBL] [Abstract][Full Text] [Related]
92. Effects of saddle height on economy and anaerobic power in well-trained cyclists. Peveler WW; Green JM J Strength Cond Res; 2011 Mar; 25(3):629-33. PubMed ID: 20581695 [TBL] [Abstract][Full Text] [Related]
93. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Hamilton K; Kilding AE; Plews DJ; Mildenhall MJ; Waldron M; Charoensap T; Cox TH; Brick MJ; Leigh WB; Maunder E Eur J Appl Physiol; 2024 Aug; 124(8):2427-2438. PubMed ID: 38546844 [TBL] [Abstract][Full Text] [Related]
94. Effects of pacing strategy on work done above critical power during high-intensity exercise. Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832 [TBL] [Abstract][Full Text] [Related]
95. The effect of exercise hyperpnea on gross efficiency and anaerobic capacity estimates during a 3-min cycle time trial. Andersson EP; Stöggl TL; Bachl P; Osborne JO J Appl Physiol (1985); 2023 Feb; 134(2):253-263. PubMed ID: 36548515 [TBL] [Abstract][Full Text] [Related]
96. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users. Graham-Paulson T; Perret C; Goosey-Tolfrey V Nutrients; 2016 Jun; 8(7):. PubMed ID: 27348000 [TBL] [Abstract][Full Text] [Related]
97. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Lamberts RP; Swart J; Noakes TD; Lambert MI Br J Sports Med; 2011 Aug; 45(10):797-804. PubMed ID: 19622525 [TBL] [Abstract][Full Text] [Related]
98. Determination of critical power using a 3-min all-out cycling test. Vanhatalo A; Doust JH; Burnley M Med Sci Sports Exerc; 2007 Mar; 39(3):548-55. PubMed ID: 17473782 [TBL] [Abstract][Full Text] [Related]
99. The relationship among peak power output, lactate threshold, and short-distance cycling performance: effects of incremental exercise test design. McNaughton LR; Roberts S; Bentley DJ J Strength Cond Res; 2006 Feb; 20(1):157-61. PubMed ID: 16506862 [TBL] [Abstract][Full Text] [Related]
100. Body mass and V'O Zoladz JA; Zapart-Bukowska J; Grandys M; Szkutnik Z; Grassi B; Majerczak J J Physiol Pharmacol; 2023 Oct; 74(5):. PubMed ID: 38085515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]