These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15855686)

  • 1. Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: effect of glucose infusion.
    Karelis AD; Péronnet F; Gardiner PF
    Can J Appl Physiol; 2005 Feb; 30(1):105-12. PubMed ID: 15855686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose infusion attenuates muscle fatigue in rat plantaris muscle during prolonged indirect stimulation in situ.
    Karelis AD; Péronnet F; Gardiner PF
    Exp Physiol; 2002 Sep; 87(5):585-92. PubMed ID: 12481933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin does not mediate the attenuation of fatigue associated with glucose infusion in rat plantaris muscle.
    Karelis AD; Peronnet F; Gardiner PF
    J Appl Physiol (1985); 2003 Jul; 95(1):330-5. PubMed ID: 12639847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lactate infusion on M-wave characteristics and force in the rat plantaris muscle during repeated stimulation in situ.
    Karelis AD; Marcil M; Péronnet F; Gardiner PF
    J Appl Physiol (1985); 2004 Jun; 96(6):2133-8. PubMed ID: 15003997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose infusion attenuates fatigue without sparing glycogen in rat soleus muscle during prolonged electrical stimulation in situ.
    Marcil M; Karelis AD; Péronnet F; Gardiner PF
    Eur J Appl Physiol; 2005 Mar; 93(5-6):569-74. PubMed ID: 15599586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle.
    Overgaard K; Nielsen OB
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan; 280(1):R48-55. PubMed ID: 11124133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ.
    Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC
    Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study.
    Mizuno T; Takanashi Y; Yoshizaki K; Kondo M
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose.
    Kabbara AA; Nguyen LT; Stephenson GM; Allen DG
    J Muscle Res Cell Motil; 2000; 21(5):481-9. PubMed ID: 11129439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold sodium thiomalate improves membrane potential impaired by high-frequency stimulation.
    Aoki T; Oba T
    Can J Physiol Pharmacol; 2004 Apr; 82(4):262-8. PubMed ID: 15181464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile and fatigue properties of the rat diaphragm musculature during the perinatal period.
    Martin-Caraballo M; Campagnaro PA; Gao Y; Greer JJ
    J Appl Physiol (1985); 2000 Feb; 88(2):573-80. PubMed ID: 10658025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased contraction-stimulated glucose transport in isolated epitrochlearis muscles of pregnant rats.
    Sancho R; Kim J; Cartee GD
    J Appl Physiol (1985); 2005 Mar; 98(3):1021-7. PubMed ID: 15531563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigability of rat hindlimb muscles after acute irreversible acetylcholinesterase inhibition.
    Panenic R; Gisiger V; Gardiner PF
    J Appl Physiol (1985); 1999 Oct; 87(4):1455-62. PubMed ID: 10517778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle.
    Fredsted A; Gissel H; Ortenblad N; Clausen T
    J Appl Physiol (1985); 2012 Jun; 112(12):2057-67. PubMed ID: 22492937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of L-(+)-lactate on tension development and excitability in in vitro rat diaphragm muscle.
    Erdogan S; Kurdak SS; Ergen N; Dogan A
    J Sports Med Phys Fitness; 2002 Dec; 42(4):418-24. PubMed ID: 12391435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force output during fatigue with progressively increasing stimulation frequency.
    Griffin L; Jun BG; Covington C; Doucet BM
    J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber type and temperature dependence of inorganic phosphate: implications for fatigue.
    Debold EP; Dave H; Fitts RH
    Am J Physiol Cell Physiol; 2004 Sep; 287(3):C673-81. PubMed ID: 15128502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel thienylhydrazone, (2-thienylidene)3,4-methylenedioxybenzoylhydrazine, increases inotropism and decreases fatigue of skeletal muscle.
    Gonzalez-Serratos H; Chang R; Pereira EF; Castro NG; Aracava Y; Melo PA; Lima PC; Fraga CA; Barreiro EJ; Albuquerque EX
    J Pharmacol Exp Ther; 2001 Nov; 299(2):558-66. PubMed ID: 11602667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of length during repetitive contractions on fatigue in rat skeletal muscle.
    MacNaughton MB; MacIntosh BR
    Pflugers Arch; 2007 Nov; 455(2):359-66. PubMed ID: 17473930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.