BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15855809)

  • 1. Altered Ca2+ homeostasis in human uremic skeletal muscle: possible involvement of cADPR in elevation of intracellular resting [Ca2+].
    López JR; Mijares A; Rojas B; Linares N; Allen PD; Shtifman A
    Nephron Physiol; 2005; 100(4):p51-60. PubMed ID: 15855809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic ADP-ribose induces a larger than normal calcium release in malignant hyperthermia-susceptible skeletal muscle fibers.
    López JR; Cordovez G; Linares N; Allen PD
    Pflugers Arch; 2000 Jun; 440(2):236-42. PubMed ID: 10898524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries.
    Teggatz EG; Zhang G; Zhang AY; Yi F; Li N; Zou AP; Li PL
    Microvasc Res; 2005 Jul; 70(1-2):65-75. PubMed ID: 16095628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells.
    Hashii M; Minabe Y; Higashida H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):207-15. PubMed ID: 10620496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells.
    Barata H; Thompson M; Zielinska W; Han YS; Mantilla CB; Prakash YS; Feitoza S; Sieck G; Chini EN
    Endocrinology; 2004 Feb; 145(2):881-9. PubMed ID: 14563702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of depolarization-induced and ryanodine-sensitive cytosolic Ca2+ elevation by synthetic carbocyclic analogs of cyclic ADP-ribose and their antagonistic effects in NG108-15 neuronal cells.
    Hashii M; Shuto S; Fukuoka M; Kudoh T; Matsuda A; Higashida H
    J Neurochem; 2005 Jul; 94(2):316-23. PubMed ID: 15998283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD38-cADPR-SERCA Signaling Axis Determines Skeletal Muscle Contractile Force in Response to β-Adrenergic Stimulation.
    Park DR; Nam TS; Kim YW; Lee SH; Kim UH
    Cell Physiol Biochem; 2018; 46(5):2017-2030. PubMed ID: 29723871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR).
    Guse AH
    Curr Mol Med; 2004 May; 4(3):239-48. PubMed ID: 15101682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines.
    Guse AH; da Silva CP; Emmrich F; Ashamu GA; Potter BV; Mayr GW
    J Immunol; 1995 Oct; 155(7):3353-9. PubMed ID: 7561029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web.
    Evans AM
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33081414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries.
    Zhang G; Teggatz EG; Zhang AY; Koeberl MJ; Yi F; Chen L; Li PL
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1172-81. PubMed ID: 16243917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic ADP-ribose-dependent Ca2+ release is modulated by free [Ca2+] in the scallop sarcoplasmic reticulum.
    Panfoli I; Burlando B; Viarengo A
    Biochem Biophys Res Commun; 1999 Apr; 257(1):57-62. PubMed ID: 10092509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic ADP-ribose increases Ca2+ removal in smooth muscle.
    Bradley KN; Currie S; MacMillan D; Muir TC; McCarron JG
    J Cell Sci; 2003 Nov; 116(Pt 21):4291-306. PubMed ID: 12966165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors.
    Copello JA; Qi Y; Jeyakumar LH; Ogunbunmi E; Fleischer S
    Cell Calcium; 2001 Oct; 30(4):269-84. PubMed ID: 11587551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel.
    Mészáros LG; Bak J; Chu A
    Nature; 1993 Jul; 364(6432):76-9. PubMed ID: 8391127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of depolarization-induced calcium release from skeletal muscle triads by cyclic ADP-ribose and inositol 1,4,5-trisphosphate.
    Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1997 Nov; 240(3):772-7. PubMed ID: 9398643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ signalling and membrane current activated by cADPr in starfish oocytes.
    Moccia F; Nusco GA; Lim D; Ercolano E; Gragnaniello G; Brown ER; Santella L
    Pflugers Arch; 2003 Aug; 446(5):541-52. PubMed ID: 12756567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle.
    White TA; Kannan MS; Walseth TF
    FASEB J; 2003 Mar; 17(3):482-4. PubMed ID: 12551848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle.
    Zhang AY; Yi F; Teggatz EG; Zou AP; Li PL
    Microvasc Res; 2004 Mar; 67(2):159-67. PubMed ID: 15020207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells.
    Bruzzone S; De Flora A; Usai C; Graeff R; Lee HC
    Biochem J; 2003 Oct; 375(Pt 2):395-403. PubMed ID: 12852785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.