These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15856783)

  • 41. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings.
    Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K
    J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions.
    Lau JA; Strengbom J; Stone LR; Reich PB; Tiffin P
    Ecology; 2008 Jan; 89(1):226-36. PubMed ID: 18376564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest.
    Norby RJ; Iversen CM
    Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.
    Erickson JE; Peresta G; Montovan KJ; Drake BG
    Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth reduction after defoliation is independent of CO
    Schmid S; Palacio S; Hoch G
    New Phytol; 2017 Jun; 214(4):1479-1490. PubMed ID: 28240369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.
    Ameye M; Wertin TM; Bauweraerts I; McGuire MA; Teskey RO; Steppe K
    New Phytol; 2012 Oct; 196(2):448-461. PubMed ID: 22897414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.
    Gonzàlez-Meler MA; Blanc-Betes E; Flower CE; Ward JK; Gomez-Casanovas N
    Physiol Plant; 2009 Dec; 137(4):473-84. PubMed ID: 19671094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners.
    Cornelissen T; Stiling P
    Oecologia; 2005 Jan; 142(1):46-56. PubMed ID: 15378348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of elevated CO2 on the extractable amino acids of leaf litter and fine roots.
    Top SM; Filley TR
    New Phytol; 2014 Jun; 202(4):1257-1266. PubMed ID: 24635834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype.
    Holton MK; Lindroth RL; Nordheim EV
    Oecologia; 2003 Oct; 137(2):233-44. PubMed ID: 12898383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The direct and indirect effects of fire on the assembly of insect herbivore communities: examples from the Florida scrub habitat.
    Kim TN; Holt RD
    Oecologia; 2012 Apr; 168(4):997-1012. PubMed ID: 21987265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Element pool changes within a scrub-oak ecosystem after 11 years of exposure to elevated CO2.
    Duval BD; Dijkstra P; Drake BG; Johnson DW; Ketterer ME; Megonigal JP; Hungate BA
    PLoS One; 2013; 8(5):e64386. PubMed ID: 23717607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings.
    Frost CJ; Hunter MD
    New Phytol; 2008; 178(4):835-845. PubMed ID: 18346100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition.
    Reich PB; Knops J; Tilman D; Craine J; Ellsworth D; Tjoelker M; Lee T; Wedin D; Naeem S; Bahauddin D; Hendrey G; Jose S; Wrage K; Goth J; Bengston W
    Nature; 2001 Apr; 410(6830):809-12. PubMed ID: 11298447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages.
    Couture JJ; Holeski LM; Lindroth RL
    Plant Cell Environ; 2014 Mar; 37(3):758-65. PubMed ID: 24006844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The clonal structure of Quercus geminata revealed by conserved microsatellite loci.
    Ainsworth EA; Tranel PJ; Drake BG; Long SP
    Mol Ecol; 2003 Feb; 12(2):527-32. PubMed ID: 12535102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling.
    Niklaus PA; Alphei J; Kampichler C; Kandeler E; Körner C; Tscherko D; Wohlfender M
    Ecology; 2007 Dec; 88(12):3153-63. PubMed ID: 18229849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorus availability in calcareous grassland.
    Goverde M; Erhardt A; Stöcklin J
    Oecologia; 2004 May; 139(3):383-91. PubMed ID: 14986095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton.
    Agrell J; Anderson P; Oleszek W; Stochmal A; Agrell C
    J Chem Ecol; 2004 Nov; 30(11):2309-24. PubMed ID: 15672673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.