These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 15856830)

  • 21. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating subglottal pressure using incomplete airflow interruption.
    Jiang J; Leder C; Bichler A
    Laryngoscope; 2006 Jan; 116(1):89-92. PubMed ID: 16481816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamics of the pseudo-glottis.
    Kotby MN; Hegazi MA; Kamal I; Gamal El Dien N; Nassar J
    Folia Phoniatr Logop; 2009; 61(1):24-8. PubMed ID: 19129709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vocal efficiency in tracheoesophageal phonation.
    Grolman W; Eerenstein SE; Tange RA; Canu G; Bogaardt H; Dijkhuis JP; Dreschler WA; Schouwenburg PF
    Auris Nasus Larynx; 2008 Mar; 35(1):83-8. PubMed ID: 17959326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new instrument for intraoperative assessment of individual vocal folds.
    Heaton JT; Kobler JB; Hillman RE; Zeitels SM
    Laryngoscope; 2005 Jul; 115(7):1223-9. PubMed ID: 15995511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. T1 glottic carcinoma involving the posterior commissure.
    Shvero J; Shvili I; Mizrachi A; Shpitzer T; Nageris B; Koren R; Hadar T
    Laryngoscope; 2009 Jun; 119(6):1116-9. PubMed ID: 19308987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voice function following CO2 laser microsurgery for precancerous and early-stage glottic carcinoma.
    Xu W; Han D; Hou L; Zhang L; Yu Z; Huang Z
    Acta Otolaryngol; 2007 Jun; 127(6):637-41. PubMed ID: 17503234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meta-analysis of impaired vocal cord mobility as a prognostic factor in T2 glottic carcinoma.
    McCoul ED; Har-El G
    Arch Otolaryngol Head Neck Surg; 2009 May; 135(5):479-86. PubMed ID: 19451470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laryngeal hyperfunction during whispering: reality or myth?
    Rubin AD; Praneetvatakul V; Gherson S; Moyer CA; Sataloff RT
    J Voice; 2006 Mar; 20(1):121-7. PubMed ID: 16503476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study.
    Horácek J; Laukkanen AM; Sidlof P; Murphy P; Svec JG
    Folia Phoniatr Logop; 2009; 61(3):137-45. PubMed ID: 19571548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Therapeutic management of glottic tumours: about a series of 41 cases of subtotal laryngectomy with cricohyoidoepiglottopexy (CHEP)].
    Tea B; Morel N; Chahine K; Sulaj H; Reyt E; Righini CA
    Rev Laryngol Otol Rhinol (Bord); 2008; 129(4-5):277-83. PubMed ID: 19408510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.