These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15857640)

  • 1. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics.
    Luo Q; Zhang X; Wang H; Qian Y
    Chemosphere; 2005 Jun; 59(9):1289-98. PubMed ID: 15857640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil.
    Fan X; Wang H; Luo Q; Ma J; Zhang X
    J Hazard Mater; 2007 Sep; 148(1-2):29-37. PubMed ID: 17418487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil.
    Luo Q; Zhang X; Wang H; Qian Y
    J Hazard Mater; 2005 May; 121(1-3):187-94. PubMed ID: 15885421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode.
    Luo Q; Wang H; Zhang X; Fan X; Qian Y
    Chemosphere; 2006 Jun; 64(3):415-22. PubMed ID: 16406052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal.
    Ma JW; Wang FY; Huang ZH; Wang H
    J Hazard Mater; 2010 Apr; 176(1-3):715-20. PubMed ID: 20006426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.
    Saichek RE; Reddy KR
    Chemosphere; 2003 Apr; 51(4):273-87. PubMed ID: 12604079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.
    Ouhadi VR; Yong RN; Shariatmadari N; Saeidijam S; Goodarzi AR; Safari-Zanjani M
    J Hazard Mater; 2010 Jan; 173(1-3):87-94. PubMed ID: 19733966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil.
    Ottosen LM; Lepkova K; Kubal M
    J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromigration of cadmium in contaminated soils driven by single and multiple primary cells.
    Yuan S; Wu C; Wan J; Lu X
    J Hazard Mater; 2008 Mar; 151(2-3):594-602. PubMed ID: 17683862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of soil chemical properties on the remediation of phenanthrene-contaminated soil by electrokinetic-Fenton process.
    Kim JH; Han SJ; Kim SS; Yang JW
    Chemosphere; 2006 Jun; 63(10):1667-76. PubMed ID: 16310828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system.
    Polcaro AM; Vacca A; Mascia M; Palmas S
    J Hazard Mater; 2007 Sep; 148(3):505-12. PubMed ID: 17412494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    Bull Environ Contam Toxicol; 2008 May; 80(5):443-6. PubMed ID: 18496629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desorption characteristics of kaolin clay contaminated with zinc from electrokinetic soil processing.
    Lee MH; Kamon M; Kim SS; Lee JY; Chung HI
    Environ Geochem Health; 2007 Aug; 29(4):281-8. PubMed ID: 17530420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites.
    Khan Z; Anjaneyulu Y
    J Hazard Mater; 2005 Feb; 118(1-3):161-9. PubMed ID: 15721540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH.
    Zhou DM; Deng CF; Cang L; Alshawabkeh AN
    Chemosphere; 2005 Oct; 61(4):519-27. PubMed ID: 16202805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge.
    Gao R; Wang J
    J Hazard Mater; 2007 Jul; 145(3):398-403. PubMed ID: 17174025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies.
    Gomes HI; Dias-Ferreira C; Ribeiro AB
    Chemosphere; 2012 Jun; 87(10):1077-90. PubMed ID: 22386462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Movement-adsorption and its mechanism of Cd in soil under combining effects of electrokinetics and a new type of bamboo charcoal].
    Ma JW; Wang H; Luo QS
    Huan Jing Ke Xue; 2007 Aug; 28(8):1829-34. PubMed ID: 17926419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation.
    Thepsithar P; Roberts EP
    Environ Sci Technol; 2006 Oct; 40(19):6098-103. PubMed ID: 17051806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant enhanced electrokinetic remediation of DDT from soils.
    Karagunduz A; Gezer A; Karasuloglu G
    Sci Total Environ; 2007 Oct; 385(1-3):1-11. PubMed ID: 17706747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.