These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15857642)

  • 21. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan.
    Li JM; Meng XG; Hu CW; Du J
    Bioresour Technol; 2009 Feb; 100(3):1168-73. PubMed ID: 18930394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan.
    Kartal SN; Imamura Y
    Bioresour Technol; 2005 Feb; 96(3):389-92. PubMed ID: 15474943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of carboxylated chitosan and its adsorption properties for cadmium (II), lead (II) and copper (II) from aqueous solutions.
    Lv KL; Du YL; Wang CM
    Water Sci Technol; 2009; 60(2):467-74. PubMed ID: 19633389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of Pb(II) from aqueous solution on chitosan/TiO(2) hybrid film.
    Tao Y; Ye L; Pan J; Wang Y; Tang B
    J Hazard Mater; 2009 Jan; 161(2-3):718-22. PubMed ID: 18495341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silica gel functionalized with 4-phenylacetophynone 4-aminobenzoylhydrazone: Synthesis of a new chelating matrix and its application as metal ion collector.
    Hatay I; Gup R; Ersöz M
    J Hazard Mater; 2008 Feb; 150(3):546-53. PubMed ID: 17566643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation.
    Paulino AT; Guilherme MR; Reis AV; Tambourgi EB; Nozaki J; Muniz EC
    J Hazard Mater; 2007 Aug; 147(1-2):139-47. PubMed ID: 17258857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rate studies on the adsorption of some dyestuffs and p-nitrophenol by chitosan and monocarboxymethylated(mcm)-chitosan from aqueous solution.
    Uzun I; Güzel F
    J Hazard Mater; 2005 Feb; 118(1-3):141-54. PubMed ID: 15721538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion-imprinted chitosan gel beads for selective adsorption of Ag⁺ from aqueous solutions.
    Zhang M; Helleur R; Zhang Y
    Carbohydr Polym; 2015 Oct; 130():206-12. PubMed ID: 26076618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro and in vivo degradation behavior of acetylated chitosan porous beads.
    Lim SM; Song DK; Oh SH; Lee-Yoon DS; Bae EH; Lee JH
    J Biomater Sci Polym Ed; 2008; 19(4):453-66. PubMed ID: 18318958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of the degree of cross-linking on the adsorption properties of chitosan beads.
    Osifo PO; Webster A; van der Merwe H; Neomagus HW; van der Gun MA; Grant DM
    Bioresour Technol; 2008 Oct; 99(15):7377-82. PubMed ID: 18342504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of copper-citrate complexes on chitosan: equilibrium modeling.
    Lu PJ; Hu WW; Chen TS; Chern JM
    Bioresour Technol; 2010 Feb; 101(4):1127-34. PubMed ID: 19822423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hg(II) removal from water by chitosan and chitosan derivatives: a review.
    Miretzky P; Cirelli AF
    J Hazard Mater; 2009 Aug; 167(1-3):10-23. PubMed ID: 19232467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of water clarifier sludge for copper removal in a liquid fluidized-bed reactor.
    Lee CI; Yang WF; Chiou CS
    J Hazard Mater; 2006 Feb; 129(1-3):58-63. PubMed ID: 16309828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle.
    Ma W; Ya FQ; Han M; Wang R
    J Hazard Mater; 2007 May; 143(1-2):296-302. PubMed ID: 17126481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.
    Pehlivan E; Altun T; Parlayici S
    J Hazard Mater; 2009 May; 164(2-3):982-6. PubMed ID: 18976859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals.
    Navarro RR; Tatsumi K
    Water Sci Technol; 2001; 43(11):9-16. PubMed ID: 11443991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium.
    Chen AH; Yang CY; Chen CY; Chen CY; Chen CW
    J Hazard Mater; 2009 Apr; 163(2-3):1068-75. PubMed ID: 18774220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of congo red from aqueous solution by adsorption onto acid activated red mud.
    Tor A; Cengeloglu Y
    J Hazard Mater; 2006 Nov; 138(2):409-15. PubMed ID: 16846690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies.
    Crini G; Gimbert F; Robert C; Martel B; Adam O; Morin-Crini N; De Giorgi F; Badot PM
    J Hazard Mater; 2008 May; 153(1-2):96-106. PubMed ID: 17888569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) chelating resin for removal of Cu(II), Co(II) and Ni(II) metal ions from aqueous solutions.
    Bekheit MM; Nawar N; Addison AW; Abdel-Latif DA; Monier M
    Int J Biol Macromol; 2011 May; 48(4):558-65. PubMed ID: 21277322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.