BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 15857664)

  • 1. Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification.
    Watanabe Y; Yasui K; Nakano T; Doi K; Fukada Y; Kitayama M; Ishimoto M; Kurihara S; Kawashima M; Fukuda H; Adachi Y; Inoue T; Nakashima K
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):12-20. PubMed ID: 15857664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model.
    Kikuchi H; Almer G; Yamashita S; Guégan C; Nagai M; Xu Z; Sosunov AA; McKhann GM; Przedborski S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):6025-30. PubMed ID: 16595634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1(G93A) motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice.
    Banks GT; Bros-Facer V; Williams HP; Chia R; Achilli F; Bryson JB; Greensmith L; Fisher EM
    PLoS One; 2009 Jul; 4(7):e6218. PubMed ID: 19593442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment.
    Filipi T; Hermanova Z; Tureckova J; Vanatko O; Anderova AM
    J Clin Med; 2020 Jan; 9(1):. PubMed ID: 31963681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uses for humanised mouse models in precision medicine for neurodegenerative disease.
    Nair RR; Corrochano S; Gasco S; Tibbit C; Thompson D; Maduro C; Ali Z; Fratta P; Arozena AA; Cunningham TJ; Fisher EMC
    Mamm Genome; 2019 Aug; 30(7-8):173-191. PubMed ID: 31203387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis.
    De Giorgio F; Maduro C; Fisher EMC; Acevedo-Arozena A
    Dis Model Mech; 2019 Jan; 12(1):. PubMed ID: 30626575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hereditary spastic paraplegia SPG4: what is known and not known about the disease.
    Solowska JM; Baas PW
    Brain; 2015 Sep; 138(Pt 9):2471-84. PubMed ID: 26094131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model systems of motor neuron diseases as a platform for studying pathogenic mechanisms and searching for therapeutic agents.
    Valetdinova KR; Medvedev SP; Zakian SM
    Acta Naturae; 2015; 7(1):19-36. PubMed ID: 25926999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can transcriptomics cut the gordian knot of amyotrophic lateral sclerosis?
    Henriques A; Gonzalez De Aguilar JL
    Curr Genomics; 2011 Nov; 12(7):506-15. PubMed ID: 22547957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments.
    Joyce PI; Fratta P; Fisher EM; Acevedo-Arozena A
    Mamm Genome; 2011 Aug; 22(7-8):420-48. PubMed ID: 21706386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic rodent models of amyotrophic lateral sclerosis.
    Van Den Bosch L
    J Biomed Biotechnol; 2011; 2011():348765. PubMed ID: 21274268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic animal models of neurodegeneration based on human genetic studies.
    Harvey BK; Richie CT; Hoffer BJ; Airavaara M
    J Neural Transm (Vienna); 2011 Jan; 118(1):27-45. PubMed ID: 20931247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo.
    Babetto E; Beirowski B; Janeckova L; Brown R; Gilley J; Thomson D; Ribchester RR; Coleman MP
    J Neurosci; 2010 Oct; 30(40):13291-304. PubMed ID: 20926655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of mouse SOD1 and human/mouse SOD1 chimeras.
    Seetharaman SV; Taylor AB; Holloway S; Hart PJ
    Arch Biochem Biophys; 2010 Nov; 503(2):183-90. PubMed ID: 20727846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis.
    Seetharaman SV; Prudencio M; Karch C; Holloway SP; Borchelt DR; Hart PJ
    Exp Biol Med (Maywood); 2009 Oct; 234(10):1140-54. PubMed ID: 19596823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease.
    Prudencio M; Hart PJ; Borchelt DR; Andersen PM
    Hum Mol Genet; 2009 Sep; 18(17):3217-26. PubMed ID: 19483195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adherent monomer-misfolded SOD1.
    Watanabe Y; Morita E; Fukada Y; Doi K; Yasui K; Kitayama M; Nakano T; Nakashima K
    PLoS One; 2008; 3(10):e3497. PubMed ID: 18946506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival.
    Wang Q; Johnson JL; Agar NY; Agar JN
    PLoS Biol; 2008 Jul; 6(7):e170. PubMed ID: 18666828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of amyotrophic lateral sclerosis (ALS)-related mutant copper-zinc superoxide dismutase with the dynein-dynactin complex contributes to inclusion formation.
    Ström AL; Shi P; Zhang F; Gal J; Kilty R; Hayward LJ; Zhu H
    J Biol Chem; 2008 Aug; 283(33):22795-805. PubMed ID: 18515363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach.
    Deng HX; Jiang H; Fu R; Zhai H; Shi Y; Liu E; Hirano M; Dal Canto MC; Siddique T
    Hum Mol Genet; 2008 Aug; 17(15):2310-9. PubMed ID: 18424447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.