These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 15857720)
1. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720 [TBL] [Abstract][Full Text] [Related]
2. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368 [TBL] [Abstract][Full Text] [Related]
3. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841 [TBL] [Abstract][Full Text] [Related]
4. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Hinckley C; Seebach B; Ziskind-Conhaim L Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878 [TBL] [Abstract][Full Text] [Related]
5. The locomotor central pattern generator of the rat spinal cord in vitro is optimally activated by noisy dorsal root waveforms. Taccola G J Neurophysiol; 2011 Aug; 106(2):872-84. PubMed ID: 21613591 [TBL] [Abstract][Full Text] [Related]
6. Zinc modulates primary afferent fiber-evoked responses of ventral roots in neonatal rat spinal cord in vitro. Otsuguro K; Ohta T; Ito S Neuroscience; 2006; 138(1):281-91. PubMed ID: 16360285 [TBL] [Abstract][Full Text] [Related]
7. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord. Beato M; Nistri A J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384 [TBL] [Abstract][Full Text] [Related]
8. A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords. Taccola G; Olivieri D; D'Angelo G; Blackburn P; Secchia L; Ballanyi K Neuroscience; 2012 Oct; 222():191-204. PubMed ID: 22824428 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury. Taccola G; Mladinic M; Nistri A Eur J Neurosci; 2010 Jan; 31(1):60-78. PubMed ID: 20092556 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings. Ziskind-Conhaim L; Redman S J Neurophysiol; 2005 Sep; 94(3):1952-61. PubMed ID: 15888530 [TBL] [Abstract][Full Text] [Related]
11. Differential modulation by tetraethylammonium of the processes underlying network bursting in the neonatal rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2007 Jun; 146(4):1906-17. PubMed ID: 17467180 [TBL] [Abstract][Full Text] [Related]
12. 5-HT prolongs ventral root bursting via presynaptic inhibition of synaptic activity during fictive locomotion in lamprey. Schwartz EJ; Gerachshenko T; Alford S J Neurophysiol; 2005 Feb; 93(2):980-8. PubMed ID: 15456802 [TBL] [Abstract][Full Text] [Related]
13. Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord. Dose F; Taccola G J Neurophysiol; 2012 Dec; 108(11):2977-90. PubMed ID: 22956799 [TBL] [Abstract][Full Text] [Related]
14. The excitatory and inhibitory modulation of primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord exerted by nitric oxide. Kurihara T; Yoshioka K Br J Pharmacol; 1996 Aug; 118(7):1743-53. PubMed ID: 8842440 [TBL] [Abstract][Full Text] [Related]
15. Orexin-2 receptors inhibit primary afferent fiber-evoked responses of ventral roots in the neonatal rat isolated spinal cord. Shono K; Yamamoto T Brain Res; 2008 Jul; 1218():97-102. PubMed ID: 18511021 [TBL] [Abstract][Full Text] [Related]
16. Locomotor pattern in the adult zebrafish spinal cord in vitro. Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928 [TBL] [Abstract][Full Text] [Related]
17. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord. Taccola G; Margaryan G; Mladinic M; Nistri A Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453 [TBL] [Abstract][Full Text] [Related]
18. Increased spike-frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury. Utzschneider DA; Bhisitkhul RB; Kocsis JD Muscle Nerve; 1993 Sep; 16(9):958-63. PubMed ID: 8355727 [TBL] [Abstract][Full Text] [Related]
19. Visually guided patch-clamp recording of spinal dorsal horn neuron's postsynaptic current evoked by primary afferent fiber. Wan YH; Wang YY; Dai F; Hu SJ Sheng Li Xue Bao; 2004 Aug; 56(4):550-7. PubMed ID: 15322694 [TBL] [Abstract][Full Text] [Related]
20. Optically recorded response of the superficial dorsal horn: dissociation from neuronal activity, sensitivity to formalin-evoked skin nociceptor activation. Lee J; Tommerdahl M; Favorov OV; Whitsel BL J Neurophysiol; 2005 Jul; 94(1):852-64. PubMed ID: 15744009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]