BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15857947)

  • 1. Zinc activates TREK-2 potassium channel activity.
    Kim JS; Park JY; Kang HW; Lee EJ; Bang H; Lee JH
    J Pharmacol Exp Ther; 2005 Aug; 314(2):618-25. PubMed ID: 15857947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels.
    Czirják G; Enyedi P
    Mol Pharmacol; 2006 Mar; 69(3):1024-32. PubMed ID: 16354767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel.
    Fink M; Duprat F; Lesage F; Reyes R; Romey G; Heurteaux C; Lazdunski M
    EMBO J; 1996 Dec; 15(24):6854-62. PubMed ID: 9003761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The two-pore-domain K(+) channels TREK-1 and TASK-3 are differentially modulated by copper and zinc.
    Gruss M; Mathie A; Lieb WR; Franks NP
    Mol Pharmacol; 2004 Sep; 66(3):530-7. PubMed ID: 15322244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel.
    Maingret F; Honoré E; Lazdunski M; Patel AJ
    Biochem Biophys Res Commun; 2002 Mar; 292(2):339-46. PubMed ID: 11906167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure.
    Lesage F; Guillemare E; Fink M; Duprat F; Lazdunski M; Romey G; Barhanin J
    EMBO J; 1996 Mar; 15(5):1004-11. PubMed ID: 8605869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TWIK-related two-pore domain potassium channel TREK-1 in carotid endothelium of normotensive and hypertensive mice.
    Pokojski S; Busch C; Grgic I; Kacik M; Salman W; Preisig-Müller R; Heyken WT; Daut J; Hoyer J; Köhler R
    Cardiovasc Res; 2008 Jul; 79(1):80-8. PubMed ID: 18339646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices.
    Zhou M; Xu G; Xie M; Zhang X; Schools GP; Ma L; Kimelberg HK; Chen H
    J Neurosci; 2009 Jul; 29(26):8551-64. PubMed ID: 19571146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antipsychotics inhibit TREK but not TRAAK channels.
    Thümmler S; Duprat F; Lazdunski M
    Biochem Biophys Res Commun; 2007 Mar; 354(1):284-9. PubMed ID: 17222806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.
    Xian Tao Li ; Dyachenko V; Zuzarte M; Putzke C; Preisig-Müller R; Isenberg G; Daut J
    Cardiovasc Res; 2006 Jan; 69(1):86-97. PubMed ID: 16248991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of single two-pore domain TREK-2 channels expressed in mammalian cells.
    Kang D; Choe C; Cavanaugh E; Kim D
    J Physiol; 2007 Aug; 583(Pt 1):57-69. PubMed ID: 17540699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids.
    Fink M; Lesage F; Duprat F; Heurteaux C; Reyes R; Fosset M; Lazdunski M
    EMBO J; 1998 Jun; 17(12):3297-308. PubMed ID: 9628867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2.
    Morton MJ; O'Connell AD; Sivaprasadarao A; Hunter M
    Pflugers Arch; 2003 Feb; 445(5):577-83. PubMed ID: 12634929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system.
    Karschin C; Wischmeyer E; Preisig-Müller R; Rajan S; Derst C; Grzeschik KH; Daut J; Karschin A
    Mol Cell Neurosci; 2001 Dec; 18(6):632-48. PubMed ID: 11749039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of human TREK-1 channels by caffeine and theophylline.
    Harinath S; Sikdar SK
    Epilepsy Res; 2005 May; 64(3):127-35. PubMed ID: 15927451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds.
    Richter TA; Dvoryanchikov GA; Chaudhari N; Roper SD
    J Neurophysiol; 2004 Sep; 92(3):1928-36. PubMed ID: 15140906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.
    Lange A; Giller K; Hornig S; Martin-Eauclaire MF; Pongs O; Becker S; Baldus M
    Nature; 2006 Apr; 440(7086):959-62. PubMed ID: 16612389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts.
    Hughes S; Magnay J; Foreman M; Publicover SJ; Dobson JP; El Haj AJ
    J Cell Physiol; 2006 Mar; 206(3):738-48. PubMed ID: 16250016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels.
    Sandoz G; Thümmler S; Duprat F; Feliciangeli S; Vinh J; Escoubas P; Guy N; Lazdunski M; Lesage F
    EMBO J; 2006 Dec; 25(24):5864-72. PubMed ID: 17110924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.