These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15857965)

  • 21. Object-based processes in the planning of goal-directed hand movements.
    Bekkering H; Pratt J
    Q J Exp Psychol A; 2004 Nov; 57(8):1345-68. PubMed ID: 15513250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between gaze and pointing toward remembered visual targets.
    Admiraal MA; Keijsers NL; Gielen CC
    J Neurophysiol; 2003 Oct; 90(4):2136-48. PubMed ID: 12815019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primate area MST-l is involved in the generation of goal-directed eye and hand movements.
    Ilg UJ; Schumann S
    J Neurophysiol; 2007 Jan; 97(1):761-71. PubMed ID: 17065255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia.
    Schindler I; Rice NJ; McIntosh RD; Rossetti Y; Vighetto A; Milner AD
    Nat Neurosci; 2004 Jul; 7(7):779-84. PubMed ID: 15208633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A ménage à trois: the eye, the hand and on-line processing.
    Starkes J; Helsen W; Elliott D
    J Sports Sci; 2002 Mar; 20(3):217-24. PubMed ID: 11999477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Updating visual memory across eye movements for ocular and arm motor control.
    Thompson AA; Henriques DY
    J Neurophysiol; 2008 Nov; 100(5):2507-14. PubMed ID: 18768640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling.
    Fautrelle L; Barbieri G; Ballay Y; Bonnetblanc F
    Neuroscience; 2011 Oct; 194():124-35. PubMed ID: 21854835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manual asymmetries in bimanual reaching: the influence of spatial compatibility and visuospatial attention.
    Neely K; Binsted G; Heath M
    Brain Cogn; 2005 Feb; 57(1):102-5. PubMed ID: 15629221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manual asymmetries in the directional coding of reaching: further evidence for hemispatial effects and right hemisphere dominance for movement planning.
    Barthélémy S; Boulinguez P
    Exp Brain Res; 2002 Dec; 147(3):305-12. PubMed ID: 12428138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initial visual information determines endpoint precision for rapid pointing.
    Ma-Wyatt A; McKee SP
    Vision Res; 2006 Dec; 46(28):4675-83. PubMed ID: 17070889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Goal-directed hand movements are not affected by the biased space representation in spatial neglect.
    Himmelbach M; Karnath HO
    J Cogn Neurosci; 2003 Oct; 15(7):972-80. PubMed ID: 14614808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frame of reference and adaptation to directional bias in a video-controlled reaching task.
    Pennel I; Coello Y; Orliaguet JP
    Ergonomics; 2002 Dec; 45(15):1047-77. PubMed ID: 12569042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numbers are represented in egocentric space: effects of numerical cues and spatial reference frames on hand laterality judgements.
    Conson M; Mazzarella E; Trojano L
    Neurosci Lett; 2009 Mar; 452(2):176-80. PubMed ID: 19383434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development of the spatial extent of oculomotor inhibition.
    McSorley E; Cruickshank AG; Inman LA
    Brain Res; 2009 Nov; 1298():92-8. PubMed ID: 19733156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antipointing task: vector inversion is supported by a perceptual estimate of visual space.
    Heath M; Maraj A; Maddigan M; Binsted G
    J Mot Behav; 2009 Oct; 41(5):383-92. PubMed ID: 19460747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent component analysis of dynamic brain responses during visuomotor adaptation.
    Contreras-Vidal JL; Kerick SE
    Neuroimage; 2004 Mar; 21(3):936-45. PubMed ID: 15006660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal.
    Paillard J
    Can J Physiol Pharmacol; 1996 Apr; 74(4):401-17. PubMed ID: 8828887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of visual constraints in the trajectory formation of grasping movements.
    Palluel-Germain R; Boy F; Orliaguet JP; Coello Y
    Neurosci Lett; 2006 Jun; 401(1-2):97-102. PubMed ID: 16556486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan.
    Vesia M; Yan X; Henriques DY; Sergio LE; Crawford JD
    J Neurophysiol; 2008 Oct; 100(4):2005-14. PubMed ID: 18684904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How position, velocity, and temporal information combine in the prospective control of catching: data and model.
    Dessing JC; Peper CL; Bullock D; Beek PJ
    J Cogn Neurosci; 2005 Apr; 17(4):668-86. PubMed ID: 15829086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.