BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15858235)

  • 1. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components.
    Bagdasaryan ZN; Aleksanyan GA; Mirzoyan AM; Roseiro JC; Bagdasaryan SN
    Appl Biochem Biotechnol; 2005 May; 125(2):113-26. PubMed ID: 15858235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimization of culture media and conditions for cultivating Erwinia sp., a producer of fumarase and aspartase].
    Bagdasarian ZN; Aleksanian GA; Gukasian GS; Mirzoian AM
    Prikl Biokhim Mikrobiol; 2000; 36(5):545-8. PubMed ID: 11042877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of fumarase in the induction of aspartate-ammonium lyase of Pseudomonas fluorescens].
    Hubert JC; Hornsperger JM; Wurtz B
    C R Acad Hebd Seances Acad Sci D; 1975 Jun; 280(24):2797-9. PubMed ID: 808318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.
    Tajima T; Hamada M; Nakashimada Y; Kato J
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1319-24. PubMed ID: 26254042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Carbanionic substrate analogues bind very tightly to fumarase and aspartase.
    Porter DJ; Bright HJ
    J Biol Chem; 1980 May; 255(10):4772-80. PubMed ID: 7372610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio.
    Ding Y; Li S; Dou C; Yu Y; Huang H
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1461-7. PubMed ID: 21416336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family.
    Fujii T; Sakai H; Kawata Y; Hata Y
    J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of composition and ionic strength of external solution on the aspartate-ammonia lyase and fumarate hydratase activity in Escherichia coli cells].
    Verevkin AN; Iakovleva VI; Zueva NN
    Biokhimiia; 1989 Dec; 54(12):1994-9. PubMed ID: 2699255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
    Liu Y; Song J; Tan T; Liu L
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2823-31. PubMed ID: 25561060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartase-hyperproducing mutants of Escherichia coli B.
    Nishimura N; Kisumi M
    Appl Environ Microbiol; 1984 Dec; 48(6):1072-5. PubMed ID: 6393873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
    Presecki AV; Vasić-Racki D
    Biotechnol Lett; 2005 Dec; 27(23-24):1835-9. PubMed ID: 16328976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of fumaric acid to L-malic acid by the bacteria of the genus Nocardia.
    Hronská H; Tokošová S; Pilniková A; Krištofíková Ľ; Rosenberg M
    Appl Biochem Biotechnol; 2015 Jan; 175(1):266-73. PubMed ID: 25261359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity.
    Iijima T; Diesterhaft MD; Freese E
    J Bacteriol; 1977 Mar; 129(3):1440-7. PubMed ID: 403177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C4-dicarboxylate metabolons: interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes.
    Schubert C; Kim NY; Unden G; Kim OB
    FEMS Microbiol Lett; 2022 Sep; 369(1):. PubMed ID: 36044995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.
    Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ
    Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production].
    Hu YH; Ouyang PK; Shen SB; Chen WL
    Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):503-5. PubMed ID: 11797209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regulation and physiological significance of aspartate-ammonium lyase (aspartase) of Pseudomonas fluorescens type R (author's transl)].
    Hubert JC; Wurtz B
    Arch Microbiol; 1975; 102(1):35-9. PubMed ID: 804298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of recombinant protein production in Escherichia coli by coproduction of aspartase.
    Wang ZW; Chen Y; Chao YP
    J Biotechnol; 2006 Jul; 124(2):403-11. PubMed ID: 16488502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.