These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 15858391)
61. Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Prise KM; Belyakov OV; Folkard M; Ozols A; Schettino G; Vojnovic B; Michael BD Adv Space Res; 2002; 30(4):871-6. PubMed ID: 12530437 [TBL] [Abstract][Full Text] [Related]
62. Cellular communication and bystander effects: a critical review for modelling low-dose radiation action. Ballarini F; Biaggi M; Ottolenghi A; Sapora O Mutat Res; 2002 Apr; 501(1-2):1-12. PubMed ID: 11934432 [TBL] [Abstract][Full Text] [Related]
63. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation. Han W; Chen S; Yu KN; Wu L Mutat Res; 2010 Feb; 684(1-2):81-9. PubMed ID: 20026341 [TBL] [Abstract][Full Text] [Related]
64. Fundamental space radiobiology. Nelson GA Gravit Space Biol Bull; 2003 Jun; 16(2):29-36. PubMed ID: 12959129 [TBL] [Abstract][Full Text] [Related]
65. Advances in microbeam technologies and applications to radiation biology. Barberet P; Seznec H Radiat Prot Dosimetry; 2015 Sep; 166(1-4):182-7. PubMed ID: 25911406 [TBL] [Abstract][Full Text] [Related]
66. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Prise KM; Belyakov OV; Folkard M; Michael BD Int J Radiat Biol; 1998 Dec; 74(6):793-8. PubMed ID: 9881726 [TBL] [Abstract][Full Text] [Related]
67. A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts. Smilenov LB; Hall EJ; Bonner WM; Sedelnikova OA Radiat Prot Dosimetry; 2006; 122(1-4):256-9. PubMed ID: 17164279 [TBL] [Abstract][Full Text] [Related]
68. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes. Tian W; Yin X; Wang L; Wang J; Zhu W; Cao J; Yang H Mutat Res; 2015 Oct; 780():77-85. PubMed ID: 26302379 [TBL] [Abstract][Full Text] [Related]
69. Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells. Kashino G; Prise KM; Suzuki K; Matsuda N; Kodama S; Suzuki M; Nagata K; Kinashi Y; Masunaga S; Ono K; Watanabe M J Radiat Res; 2007 Jul; 48(4):327-33. PubMed ID: 17587774 [TBL] [Abstract][Full Text] [Related]
70. Mutations induced by alpha-particle radiation--no evidence for a bystander effect. Chadwick KH; Leenhouts HP Radiat Res; 2000 Sep; 154(3):351-2. PubMed ID: 11012344 [No Abstract] [Full Text] [Related]
71. Novel approaches with track segment alpha particles and cell co-cultures in studies of bystander effects. Geard CR; Jenkins-Baker G; Marino SA; Ponnaiya B Radiat Prot Dosimetry; 2002; 99(1-4):233-6. PubMed ID: 12194293 [TBL] [Abstract][Full Text] [Related]
72. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Azzam EI; de Toledo SM; Little JB Oncogene; 2003 Oct; 22(45):7050-7. PubMed ID: 14557810 [TBL] [Abstract][Full Text] [Related]
73. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Belyakov OV; Mitchell SA; Parikh D; Randers-Pehrson G; Marino SA; Amundson SA; Geard CR; Brenner DJ Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14203-8. PubMed ID: 16162670 [TBL] [Abstract][Full Text] [Related]
74. Low-dose hypersensitivity and bystander effect are not mutually exclusive in A549 lung carcinoma cells after irradiation with charged particles. Heuskin AC; Wéra AC; Riquier H; Michiels C; Lucas S Radiat Res; 2013 Nov; 180(5):491-8. PubMed ID: 24125486 [TBL] [Abstract][Full Text] [Related]
75. Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Bishayee A; Hill HZ; Stein D; Rao DV; Howell RW Radiat Res; 2001 Feb; 155(2):335-44. PubMed ID: 11175669 [TBL] [Abstract][Full Text] [Related]
76. Cellular radiation effects and the bystander response. Little JB Mutat Res; 2006 May; 597(1-2):113-8. PubMed ID: 16413041 [TBL] [Abstract][Full Text] [Related]
77. Biochemical alterations in human cells irradiated with alpha particles delivered by macro- or microbeams. Gault N; Rigaud O; Poncy JL; Lefaix JL Radiat Res; 2007 May; 167(5):551-62. PubMed ID: 17474787 [TBL] [Abstract][Full Text] [Related]
79. The Roles of p21(Waf1/CIP1) and Hus1 in Generation and Transmission of Damage Signals Stimulated by Low-Dose Alpha-Particle Irradiation. Zhao Y; Ma X; Wang J; Chen S; Yuan H; Xu A; Hang H; Wu L Radiat Res; 2015 Dec; 184(6):578-85. PubMed ID: 26600172 [TBL] [Abstract][Full Text] [Related]
80. Emerging Role of Secondary Bystander Effects Induced by Fractionated Proton Microbeam Radiation. Autsavapromporn N; Liu C; Kobayashi A; Ahmad TAFT; Oikawa M; Dukaew N; Wang J; Wongnoppavichb A; Konishic T Radiat Res; 2019 Feb; 191(2):211-216. PubMed ID: 30526323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]