These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15858995)

  • 1. In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe.
    Lo LW; Tsai PJ; Huang SH; Chen WY; Wang YT; Chang CH; Yang CS
    Anal Chem; 2005 Feb; 77(4):1125-31. PubMed ID: 15858995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo spectrometric calcium flux recordings of intrinsic Caudate-Putamen cells and transplanted IMR-32 neuroblastoma cells using miniature fiber optrodes in anesthetized and awake rats and monkeys.
    Duff Davis M; Schmidt JJ
    J Neurosci Methods; 2000 Jun; 99(1-2):9-23. PubMed ID: 10936638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo.
    Ilyin SE; Flynn MC; Plata-Salamán CR
    J Neurosci Methods; 2001 Jul; 108(1):91-6. PubMed ID: 11459622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber optic in vivo imaging in the mammalian nervous system.
    Mehta AD; Jung JC; Flusberg BA; Schnitzer MJ
    Curr Opin Neurobiol; 2004 Oct; 14(5):617-28. PubMed ID: 15464896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion.
    Yang CS; Chang CH; Tsai PJ; Chen WY; Tseng FG; Lo LW
    Anal Chem; 2004 Aug; 76(15):4465-71. PubMed ID: 15283589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [An application of the fibered fluorescence microscopy to continuously monitor the rat cerebral neurons in vivo].
    Shi Y; Chen LL; Jiang M
    Sheng Li Xue Bao; 2012 Dec; 64(6):695-9. PubMed ID: 23258334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain.
    Chavko M; Koller WA; Prusaczyk WK; McCarron RM
    J Neurosci Methods; 2007 Jan; 159(2):277-81. PubMed ID: 16949675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-optic fluorescence imaging.
    Flusberg BA; Cocker ED; Piyawattanametha W; Jung JC; Cheung EL; Schnitzer MJ
    Nat Methods; 2005 Dec; 2(12):941-50. PubMed ID: 16299479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor.
    Wen-xu L; Jian C
    Anal Chem; 2003 Mar; 75(6):1458-62. PubMed ID: 12659210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of fiber optic and electrochemical pH sensors to monitor brain tissue.
    Grant SA; Bettencourt K; Krulevitch P; Hamilton J; Glass R
    Crit Rev Biomed Eng; 2000; 28(1-2):159-63. PubMed ID: 10999380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging.
    Bao H; Allen J; Pattie R; Vance R; Gu M
    Opt Lett; 2008 Jun; 33(12):1333-5. PubMed ID: 18552949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Continuous monitoring of blood adriamycin using a fiber optic chemical sensor in rabbit].
    Lu WX; Chen J
    Yao Xue Xue Bao; 2002 Jul; 37(7):543-7. PubMed ID: 12914325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber.
    Diamond KR; Patterson MS; Farrell TJ
    Appl Opt; 2003 May; 42(13):2436-42. PubMed ID: 12737480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
    Engelbrecht CJ; Johnston RS; Seibel EJ; Helmchen F
    Opt Express; 2008 Apr; 16(8):5556-64. PubMed ID: 18542658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single optical fiber probe for fluorescence detection and optogenetic stimulation.
    Pashaie R; Falk R
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):268-80. PubMed ID: 23060317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy.
    Shi L; Zeng M; Sun Y; Fu BM
    J Biomech Eng; 2014 Mar; 136(3):031005. PubMed ID: 24193698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo.
    Liao KC; Hogen-Esch T; Richmond FJ; Marcu L; Clifton W; Loeb GE
    Biosens Bioelectron; 2008 May; 23(10):1458-65. PubMed ID: 18304798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time micro-fiberoptic monitoring of endogenous fluorescence in the rat conceptus during hypoxia.
    Thorsrud BA; Harris C
    Teratology; 1993 Oct; 48(4):343-53. PubMed ID: 8278934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments.
    Hirano M; Yamashita Y; Miyakawa A
    Brain Res; 1996 Sep; 732(1-2):61-8. PubMed ID: 8891269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber.
    Panova AA; Pantano P; Walt DR
    Anal Chem; 1997 Apr; 69(8):1635-41. PubMed ID: 9109355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.