These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15859083)

  • 1. Quantification of the 35S promoter in DNA extracts from genetically modified organisms using real-time polymerase chain reaction and specificity assessment on various genetically modified organisms, part I: operating procedure.
    Fernandez S; Charles-Delobel C; Geldreich A; Berthier G; Boyer F; Collonnier C; Coué-Philippe G; Diolez A; Duplan MN; Kebdani N; Romaniuk M; Feinberg M; Bertheau Y
    J AOAC Int; 2005; 88(2):547-57. PubMed ID: 15859083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.
    Cankar K; Ravnikar M; Zel J; Gruden K; Toplak N
    J AOAC Int; 2005; 88(3):814-22. PubMed ID: 16001857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: interlaboratory study.
    Feinberg M; Fernandez S; Cassard S; Bertheau Y
    J AOAC Int; 2005; 88(2):558-73. PubMed ID: 15859084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.
    Bak A; Emerson JB
    BMC Biotechnol; 2019 Nov; 19(1):73. PubMed ID: 31699075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.
    Takabatake R; Koiwa T; Kasahara M; Takashima K; Futo S; Minegishi Y; Akiyama H; Teshima R; Oguchi T; Mano J; Furui S; Kitta K
    Shokuhin Eiseigaku Zasshi; 2011; 52(4):265-9. PubMed ID: 21873818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlaboratory study of qualitative PCR methods for genetically modified maize events MON810, bt11, GA21, and CaMV P35S.
    Takabatake R; Takashima K; Kurashima T; Mano J; Furui S; Kitta K; Koiwa T; Akiyama H; Teshima R; Futo S; Minegishi Y
    J AOAC Int; 2013; 96(2):346-52. PubMed ID: 23767360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unconventional P-35S sequence identified in genetically modified maize.
    Al-Hmoud N; Al-Husseini N; Ibrahim-Alobaide MA; Kübler E; Farfoura M; Alobydi H; Al-Rousan H
    GM Crops Food; 2014; 5(1):58-64. PubMed ID: 24495911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.
    Qiu B; Zhang YS; Lin YB; Lu YJ; Lin ZY; Wong KY; Chen GN
    Biosens Bioelectron; 2013 Mar; 41():168-71. PubMed ID: 22959013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.
    Cankar K; Chauvensy-Ancel V; Fortabat MN; Gruden K; Kobilinsky A; Zel J; Bertheau Y
    Anal Biochem; 2008 May; 376(2):189-99. PubMed ID: 18346452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and quantitative polymerase chain reaction analysis for genetically modified maize MON863.
    Lee SH; Min DM; Kim JK
    J Agric Food Chem; 2006 Feb; 54(4):1124-9. PubMed ID: 16478226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.
    Huang X; Zhai C; You Q; Chen H
    Anal Bioanal Chem; 2014 Jul; 406(17):4243-9. PubMed ID: 24736809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.
    Eugster A; Murmann P; Kaenzig A; Breitenmoser A
    Chimia (Aarau); 2014 Oct; 68(10):701-4. PubMed ID: 25437161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.
    Yang L; Xu S; Pan A; Yin C; Zhang K; Wang Z; Zhou Z; Zhang D
    J Agric Food Chem; 2005 Nov; 53(24):9312-8. PubMed ID: 16302741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of Conversion Factors for Genetically Modified Maize Quantification].
    Takabatake R; Onishi M; Mano J; Kishine M; Soga K; Nakamura K; Kondo K; Kitta K
    Shokuhin Eiseigaku Zasshi; 2020; 61(6):235-238. PubMed ID: 33390532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.
    Salvi S; D'Orso F; Morelli G
    J Agric Food Chem; 2008 Jun; 56(12):4320-7. PubMed ID: 18494480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.
    Yang L; Guo J; Pan A; Zhang H; Zhang K; Wang Z; Zhang D
    J Agric Food Chem; 2007 Jan; 55(1):15-24. PubMed ID: 17199308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of genetically modified corn (Bt176) in spiked cow blood samples by polymerase chain reaction and immunoassay methods.
    Petit L; Baraige F; Bertheau Y; Brunschwig P; Diolez A; Duhem K; Duplan MN; Fach P; Kobilinsky A; Lamart S; Schattner A; Martin P
    J AOAC Int; 2005; 88(2):654-64. PubMed ID: 15861534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food.
    Pacheco Coello R; Pestana Justo J; Factos Mendoza A; Santos Ordoñez E
    BMC Res Notes; 2017 Dec; 10(1):758. PubMed ID: 29262852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells.
    Bhattacharyya S; Dey N; Maiti IB
    Virus Res; 2002 Dec; 90(1-2):47-62. PubMed ID: 12457962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.
    Weighardt F; Barbati C; Paoletti C; Querci M; Kay S; De Beuckeleer M; Van den Eede G
    J AOAC Int; 2004; 87(6):1342-55. PubMed ID: 15675446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.