BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15859245)

  • 1. X-ray crystallography and biological metal centers: is seeing believing?
    Sommerhalter M; Lieberman RL; Rosenzweig AC
    Inorg Chem; 2005 Feb; 44(4):770-8. PubMed ID: 15859245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein.
    Griese JJ; Roos K; Cox N; Shafaat HS; Branca RM; Lehtiö J; Gräslund A; Lubitz W; Siegbahn PE; Högbom M
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17189-94. PubMed ID: 24101498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metalloprotein Crystallography: More than a Structure.
    Bowman SE; Bridwell-Rabb J; Drennan CL
    Acc Chem Res; 2016 Apr; 49(4):695-702. PubMed ID: 26975689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Vreven T; Musaev DG; Morokuma K; Farkas O; Schlegel HB
    J Am Chem Soc; 2002 Jan; 124(2):192-3. PubMed ID: 11782169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane.
    Lieberman RL; Rosenzweig AC
    Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Methods Enzymol; 2016; 580():135-48. PubMed ID: 27586331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography.
    Geremia S; Di Costanzo L; Randaccio L; Engel DE; Lombardi A; Nastri F; DeGrado WF
    J Am Chem Soc; 2005 Dec; 127(49):17266-76. PubMed ID: 16332076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional and electrostatics study of oxidized and reduced ribonucleotide reductase; comparisons with methane monooxygenase.
    Lovell T; Li J; Noodleman L
    J Biol Inorg Chem; 2002 Sep; 7(7-8):799-809. PubMed ID: 12203016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The geometry of metal-ligand interactions relevant to proteins.
    Harding MM
    Acta Crystallogr D Biol Crystallogr; 1999 Aug; 55(Pt 8):1432-43. PubMed ID: 10417412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystallographic studies of metalloproteins.
    Volbeda A
    Methods Mol Biol; 2014; 1122():189-206. PubMed ID: 24639261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass.
    Högbom M; Stenmark P; Voevodskaya N; McClarty G; Gräslund A; Nordlund P
    Science; 2004 Jul; 305(5681):245-8. PubMed ID: 15247479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the de novo design of a catalytically active helix bundle: a substrate-accessible carboxylate-bridged dinuclear metal center.
    Di Costanzo L; Wade H; Geremia S; Randaccio L; Pavone V; DeGrado WF; Lombardi A
    J Am Chem Soc; 2001 Dec; 123(51):12749-57. PubMed ID: 11749531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins.
    Rulísek L; Vondrásek J
    J Inorg Biochem; 1998 Sep; 71(3-4):115-27. PubMed ID: 9833317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Escherichia coli ribonucleotide reductase R2 in space group P6122.
    Sommerhalter M; Saleh L; Bollinger JM; Rosenzweig AC
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1649-54. PubMed ID: 16301799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes.
    Banerjee R; Srinivas V; Lebrette H
    Subcell Biochem; 2022; 99():109-153. PubMed ID: 36151375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase.
    Nordlund P; Dalton H; Eklund H
    FEBS Lett; 1992 Aug; 307(3):257-62. PubMed ID: 1644180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.