These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 15859264)
1. N2S2Ni metallodithiolate complexes as ligands: structural and aqueous solution quantitative studies of the ability of metal ions to form M-S-Ni bridges to mercapto groups coordinated to nickel(II). implications for acetyl coenzyme A synthase. Golden ML; Whaley CM; Rampersad MV; Reibenspies JH; Hancock RD; Darensbourg MY Inorg Chem; 2005 Feb; 44(4):875-83. PubMed ID: 15859264 [TBL] [Abstract][Full Text] [Related]
2. Capture of Ni(II), Cu(I) and Z(II) by thiolate sulfurs of an N2S2Ni complex: a role for a metallothiolate ligand in the acetyl-coenzyme A synthase active site. Golden ML; Rampersad MV; Reibenspies JH; Darensbourg MY Chem Commun (Camb); 2003 Aug; (15):1824-5. PubMed ID: 12931985 [TBL] [Abstract][Full Text] [Related]
3. Sulfur bridging interactions of cis-planar NiII-S2N2 coordination units with nickel(II), copper(I,II), zinc(II), and mercury(II): a library of bridging modes, including NiII(micro2-SR)2MI,II rhombs. Rao PV; Bhaduri S; Jiang J; Holm RH Inorg Chem; 2004 Sep; 43(19):5833-49. PubMed ID: 15360232 [TBL] [Abstract][Full Text] [Related]
4. Characterization of steric and electronic properties of NiN2S2 complexes as S-donor metallodithiolate ligands. Rampersad MV; Jeffery SP; Golden ML; Lee J; Reibenspies JH; Darensbourg DJ; Darensbourg MY J Am Chem Soc; 2005 Dec; 127(49):17323-34. PubMed ID: 16332082 [TBL] [Abstract][Full Text] [Related]
5. Thiolate-bridged nickel-copper complexes: a binuclear model for the catalytic site of acetyl coenzyme a synthase? Krishnan R; Voo JK; Riordan CG; Zahkarov L; Rheingold AL J Am Chem Soc; 2003 Apr; 125(15):4422-3. PubMed ID: 12683803 [TBL] [Abstract][Full Text] [Related]
6. Bisamidate and mixed amine/amidate NiN2S2 complexes as models for nickel-containing acetyl coenzyme A synthase and superoxide dismutase: an experimental and computational study. Mathrubootham V; Thomas J; Staples R; McCraken J; Shearer J; Hegg EL Inorg Chem; 2010 Jun; 49(12):5393-406. PubMed ID: 20507077 [TBL] [Abstract][Full Text] [Related]
7. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics. Green KN; Jeffery SP; Reibenspies JH; Darensbourg MY J Am Chem Soc; 2006 May; 128(19):6493-8. PubMed ID: 16683815 [TBL] [Abstract][Full Text] [Related]
8. Electronic effects of (N2S2)M(NO) complexes (M = Fe, Co) as metallodithiolate ligands. Hess JL; Conder HL; Green KN; Darensbourg MY Inorg Chem; 2008 Mar; 47(6):2056-63. PubMed ID: 18260623 [TBL] [Abstract][Full Text] [Related]
9. Versatile N2S2 nickel-dithiolates as mono- and bridging bidentate, S-donor ligands to gold(I). Pinder TA; Montalvo SK; Lunsford AM; Hsieh CH; Reibenspies JH; Darensbourg MY Dalton Trans; 2014 Jan; 43(1):138-44. PubMed ID: 24108061 [TBL] [Abstract][Full Text] [Related]
10. Probing variable amine/amide ligation in Ni(II)N2S2 complexes using sulfur K-edge and nickel L-edge X-ray absorption spectroscopies: implications for the active site of nickel superoxide dismutase. Shearer J; Dehestani A; Abanda F Inorg Chem; 2008 Apr; 47(7):2649-60. PubMed ID: 18330983 [TBL] [Abstract][Full Text] [Related]
12. Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: an experimental and theoretical study. Fox DC; Fiedler AT; Halfen HL; Brunold TC; Halfen JA J Am Chem Soc; 2004 Jun; 126(24):7627-38. PubMed ID: 15198611 [TBL] [Abstract][Full Text] [Related]
13. Chemical issues addressing the construction of the distal Ni[cysteine-glycine-cysteine]2- site of acetyl CoA synthase: why not copper? Green KN; Brothers SM; Lee B; Darensbourg MY; Rockcliffe DA Inorg Chem; 2009 Apr; 48(7):2780-92. PubMed ID: 19253985 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6. Mukherjee T; Costa Pessoa J; Kumar A; Sarkar AR Dalton Trans; 2013 Feb; 42(7):2594-607. PubMed ID: 23223610 [TBL] [Abstract][Full Text] [Related]
15. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO. Harrop TC; Olmstead MM; Mascharak PK J Am Chem Soc; 2004 Nov; 126(45):14714-5. PubMed ID: 15535684 [TBL] [Abstract][Full Text] [Related]
16. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not. Seravalli J; Xiao Y; Gu W; Cramer SP; Antholine WE; Krymov V; Gerfen GJ; Ragsdale SW Biochemistry; 2004 Apr; 43(13):3944-55. PubMed ID: 15049702 [TBL] [Abstract][Full Text] [Related]
17. Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis. Lindahl PA J Biol Inorg Chem; 2004 Jul; 9(5):516-24. PubMed ID: 15221478 [TBL] [Abstract][Full Text] [Related]
19. Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. Fernandes AS; Cabral MF; Costa J; Castro M; Delgado R; Drew MG; Félix V J Inorg Biochem; 2011 Mar; 105(3):410-9. PubMed ID: 21421127 [TBL] [Abstract][Full Text] [Related]
20. Structures and energetics of models for the active site of acetyl-coenzyme a synthase: role of distal and proximal metals in catalysis. Webster CE; Darensbourg MY; Lindahl PA; Hall MB J Am Chem Soc; 2004 Mar; 126(11):3410-1. PubMed ID: 15025453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]