BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15859350)

  • 1. [Construction of flocculation selective vector and expression of beta-glucosidase gene in Saccharomyces cerevisiae].
    Liu XL; He P; Lu DJ; Shen A; Jiang N
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):167-70. PubMed ID: 15859350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced expression of bacterial beta-glucosidase activity in Saccharomyces.
    Adam AC; Rubio-Texeira M; Polaina J
    Yeast; 1995 Apr; 11(5):395-406. PubMed ID: 7597843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface.
    Tokuhiro K; Ishida N; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.
    van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH
    J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretion of Trichoderma reesei beta-glucosidase by Saccharomyces cerevisiae.
    Cummings C; Fowler T
    Curr Genet; 1996 Feb; 29(3):227-33. PubMed ID: 8595668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of flocculent industrial yeast by the yeast flocculation gene FLO1.
    Wang FZ
    Prikl Biokhim Mikrobiol; 2009; 45(5):586-91. PubMed ID: 19845292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase.
    Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y
    Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast.
    Smith JD; Tang BC; Robinson AS
    Biotechnol Bioeng; 2004 Feb; 85(3):340-50. PubMed ID: 14748090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a glucose-tolerant beta-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae.
    Benoliel B; Poças-Fonseca MJ; Torres FA; de Moraes LM
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2036-44. PubMed ID: 19669941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Saccharomyces cerevisiae strain able to ferment cellobiose.
    Adam AC; Polaina J
    Curr Genet; 1991 Jul; 20(1-2):5-8. PubMed ID: 1934117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Expression, purification and enzymatic characterization of Bacillus polymyxa beta-glucosidase gene( bglA ) in Escherichia coli].
    Zhao Y; Liu WF; Mao AJ; Jiang N; Dong ZY
    Sheng Wu Gong Cheng Xue Bao; 2004 Sep; 20(5):741-4. PubMed ID: 15974001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering yeast for efficient cellulose degradation.
    Van Rensburg P; Van Zyl WH; Pretorius IS
    Yeast; 1998 Jan; 14(1):67-76. PubMed ID: 9483796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains.
    Smekenov I; Bakhtambayeva M; Bissenbayev K; Saparbayev M; Taipakova S; Bissenbaev AK
    Braz J Microbiol; 2020 Mar; 51(1):107-123. PubMed ID: 31776864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population dynamics of a continuous fermentation of recombinant Saccharomyces cerevisiae using flow cytometry.
    Lú Chau T; Guillán A; Roca E; Núñez MJ; Lema JM
    Biotechnol Prog; 2001; 17(5):951-7. PubMed ID: 11587589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae.
    Zietsman AJ; de Klerk D; van Rensburg P
    FEMS Yeast Res; 2011 Feb; 11(1):88-103. PubMed ID: 21062416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production.
    Cunha AF; Missawa SK; Gomes LH; Reis SF; Pereira GA
    FEMS Yeast Res; 2006 Mar; 6(2):280-7. PubMed ID: 16487349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.