BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15859583)

  • 1. Chemical sensor based on microfabricated wristwatch tuning forks.
    Ren M; Forzani ES; Tao N
    Anal Chem; 2005 May; 77(9):2700-7. PubMed ID: 15859583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Enhancement of a Microfabricated Resonator Using Electrospun Nanoporous Polymer Wire.
    Hwang S; Kim W; Yoon H; Jeon S
    ACS Sens; 2017 Sep; 2(9):1355-1358. PubMed ID: 28812345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2009 May; 20(21):215502. PubMed ID: 19423931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective stiffness of qPlus sensor and quartz tuning fork.
    Kim J; Won D; Sung B; An S; Jhe W
    Ultramicroscopy; 2014 Jun; 141():56-62. PubMed ID: 24727200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quartz-enhanced photoacoustic spectroscopy sensing using trapezoidal- and round-head quartz tuning forks.
    Fang C; Liang T; Qiao S; He Y; Shen Z; Ma Y
    Opt Lett; 2024 Feb; 49(3):770-773. PubMed ID: 38300111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation.
    Alanazi N; Alodhayb AN; Almutairi A; Alshehri H; AlYemni S; Alsowygh G; Abdulmawla S; Shamma K; Albrithen H; Muthuramamoorthy M; Almuqrin AH
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intense Pulsed Light-Treated Near-Field Electrospun Nanofiber on a Quartz Tuning Fork for Multimodal Gas Sensors.
    Wong D; Abuzalat O; Ko J; Lee J; Kim S; Park SS
    ACS Appl Mater Interfaces; 2020 May; 12(21):24308-24318. PubMed ID: 32356648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid.
    Zhang Y; Li Y; Song Z; Lin R; Chen Y; Qian J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the dynamics of signal transduction for adsorption of gases and vapors on carbon nanotube sensors.
    Lee CY; Strano MS
    Langmuir; 2005 May; 21(11):5192-6. PubMed ID: 15896070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Ultramicroscopy; 2011 Feb; 111(3):186-90. PubMed ID: 21333855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Tuning Fork Resonance Properties on Quartz-Enhanced Photoacoustic Spectroscopy Performance.
    Zheng H; Lin H; Dong L; Liu Y; Patimisco P; Zweck J; Mozumder A; Sampaolo A; Spagnolo V; Huang B; Tang J; Dong L; Zhu W; Yu J; Chen Z; Tittel FK
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic spectroscopy for gas sensing: A comparison between piezoelectric and interferometric readout in custom quartz tuning forks.
    Dello Russo S; Zhou S; Zifarelli A; Patimisco P; Sampaolo A; Giglio M; Iannuzzi D; Spagnolo V
    Photoacoustics; 2020 Mar; 17():100155. PubMed ID: 31956485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy.
    Patimisco P; Sampaolo A; Giglio M; Mackowiak V; Rossmadl H; Gross B; Cable A; Tittel FK; Spagnolo V
    Opt Lett; 2018 Apr; 43(8):1854-1857. PubMed ID: 29652382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption Thermodynamic Analysis of a Quartz Tuning Fork Based Sensor for Volatile Organic Compounds Detection.
    Deng Y; Liu NY; Tsow F; Xian X; Forzani ES
    ACS Sens; 2017 Nov; 2(11):1662-1668. PubMed ID: 29057647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy.
    Patimisco P; Sampaolo A; Giglio M; Dello Russo S; Mackowiak V; Rossmadl H; Cable A; Tittel FK; Spagnolo V
    Opt Express; 2019 Jan; 27(2):1401-1415. PubMed ID: 30696206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Enhancement of a Quartz Tuning Fork Sensor Using a Cellulose Nanocrystal-Reinforced Nanoporous Polymer Fiber.
    Kim W; Park E; Jeon S
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguide micro-opto-electro-mechanical resonant chemical sensors.
    Pruessner MW; Stievater TH; Ferraro MS; Rabinovich WS; Stepnowski JL; McGill RA
    Lab Chip; 2010 Mar; 10(6):762-8. PubMed ID: 20221565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers.
    Loui A; Ratto TV; Wilson TS; McCall SK; Mukerjee EV; Love AH; Hart BR
    Analyst; 2008 May; 133(5):608-15. PubMed ID: 18427681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-coded chemical sensors.
    Tsow F; Forzani ES; Tao NJ
    Anal Chem; 2008 Feb; 80(3):606-11. PubMed ID: 18163596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.