BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 15860665)

  • 1. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development.
    Muntean AG; Crispino JD
    Blood; 2005 Aug; 106(4):1223-31. PubMed ID: 15860665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic rescue of GATA-1-deficient mice with GATA-1 lacking a FOG-1 association site phenocopies patients with X-linked thrombocytopenia.
    Shimizu R; Ohneda K; Engel JD; Trainor CD; Yamamoto M
    Blood; 2004 Apr; 103(7):2560-7. PubMed ID: 14656885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.
    Nichols KE; Crispino JD; Poncz M; White JG; Orkin SH; Maris JM; Weiss MJ
    Nat Genet; 2000 Mar; 24(3):266-70. PubMed ID: 10700180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors.
    Wang X; Crispino JD; Letting DL; Nakazawa M; Poncz M; Blobel GA
    EMBO J; 2002 Oct; 21(19):5225-34. PubMed ID: 12356738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-linked thrombocytopenia caused by a novel mutation of GATA-1.
    Mehaffey MG; Newton AL; Gandhi MJ; Crossley M; Drachman JG
    Blood; 2001 Nov; 98(9):2681-8. PubMed ID: 11675338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction.
    Yu C; Niakan KK; Matsushita M; Stamatoyannopoulos G; Orkin SH; Raskind WH
    Blood; 2002 Sep; 100(6):2040-5. PubMed ID: 12200364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of GATA-1 deficiency in megakaryocytes and platelets.
    Vyas P; Ault K; Jackson CW; Orkin SH; Shivdasani RA
    Blood; 1999 May; 93(9):2867-75. PubMed ID: 10216081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis.
    Chang AN; Cantor AB; Fujiwara Y; Lodish MB; Droho S; Crispino JD; Orkin SH
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9237-42. PubMed ID: 12077323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation.
    Cantor AB; Katz SG; Orkin SH
    Mol Cell Biol; 2002 Jun; 22(12):4268-79. PubMed ID: 12024038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1.
    Del Vecchio GC; Giordani L; De Santis A; De Mattia D
    Acta Haematol; 2005; 114(2):113-6. PubMed ID: 16103636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation.
    Tsang AP; Visvader JE; Turner CA; Fujiwara Y; Yu C; Weiss MJ; Crossley M; Orkin SH
    Cell; 1997 Jul; 90(1):109-19. PubMed ID: 9230307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hematopoietic cells lacking transcription factor GATA-1.
    Pevny L; Lin CS; D'Agati V; Simon MC; Orkin SH; Costantini F
    Development; 1995 Jan; 121(1):163-72. PubMed ID: 7867497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression.
    Chlon TM; Doré LC; Crispino JD
    Mol Cell; 2012 Aug; 47(4):608-21. PubMed ID: 22771118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Furin gene (fur) regulation in differentiating human megakaryoblastic Dami cells: involvement of the proximal GATA recognition motif in the P1 promoter and impact on the maturation of furin substrates.
    Laprise MH; Grondin F; Cayer P; McDonald PP; Dubois CM
    Blood; 2002 Nov; 100(10):3578-87. PubMed ID: 12411321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1.
    Kuhl C; Atzberger A; Iborra F; Nieswandt B; Porcher C; Vyas P
    Mol Cell Biol; 2005 Oct; 25(19):8592-606. PubMed ID: 16166640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation.
    Freson K; Matthijs G; Thys C; Mariën P; Hoylaerts MF; Vermylen J; Van Geet C
    Hum Mol Genet; 2002 Jan; 11(2):147-52. PubMed ID: 11809723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factor GATA-1 in megakaryocyte development.
    Orkin SH; Shivdasani RA; Fujiwara Y; McDevitt MA
    Stem Cells; 1998; 16 Suppl 2():79-83. PubMed ID: 11012179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development.
    Shivdasani RA; Fujiwara Y; McDevitt MA; Orkin SH
    EMBO J; 1997 Jul; 16(13):3965-73. PubMed ID: 9233806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex.
    Crispino JD; Lodish MB; MacKay JP; Orkin SH
    Mol Cell; 1999 Feb; 3(2):219-28. PubMed ID: 10078204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development.
    Woo AJ; Moran TB; Schindler YL; Choe SK; Langer NB; Sullivan MR; Fujiwara Y; Paw BH; Cantor AB
    Mol Cell Biol; 2008 Apr; 28(8):2675-89. PubMed ID: 18250154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.