These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15860732)

  • 1. 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity.
    Béguin P; Mahalakshmi RN; Nagashima K; Cher DH; Takahashi A; Yamada Y; Seino Y; Hunziker W
    J Cell Sci; 2005 May; 118(Pt 9):1923-34. PubMed ID: 15860732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by calmodulin and predicted serine phosphorylations.
    Mahalakshmi RN; Nagashima K; Ng MY; Inagaki N; Hunziker W; Béguin P
    Traffic; 2007 Sep; 8(9):1150-63. PubMed ID: 17605761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of 14-3-3 and calmodulin binding in subcellular localization and function of the small G-protein Rem2.
    Béguin P; Mahalakshmi RN; Nagashima K; Cher DH; Kuwamura N; Yamada Y; Seino Y; Hunziker W
    Biochem J; 2005 Aug; 390(Pt 1):67-75. PubMed ID: 15862114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear sequestration of beta-subunits by Rad and Rem is controlled by 14-3-3 and calmodulin and reveals a novel mechanism for Ca2+ channel regulation.
    Béguin P; Mahalakshmi RN; Nagashima K; Cher DH; Ikeda H; Yamada Y; Seino Y; Hunziker W
    J Mol Biol; 2006 Jan; 355(1):34-46. PubMed ID: 16298391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport.
    Mahalakshmi RN; Ng MY; Guo K; Qi Z; Hunziker W; Béguin P
    Traffic; 2007 Sep; 8(9):1164-78. PubMed ID: 17605760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gem protein signaling and regulation.
    Ward Y; Kelly K
    Methods Enzymol; 2006; 407():468-83. PubMed ID: 16757346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity.
    Ward Y; Spinelli B; Quon MJ; Chen H; Ikeda SR; Kelly K
    Mol Cell Biol; 2004 Jan; 24(2):651-61. PubMed ID: 14701738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin binds to and inhibits GTP binding of the ras-like GTPase Kir/Gem.
    Fischer R; Wei Y; Anagli J; Berchtold MW
    J Biol Chem; 1996 Oct; 271(41):25067-70. PubMed ID: 8810259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RGK family: a regulatory tail of small GTP-binding proteins.
    Kelly K
    Trends Cell Biol; 2005 Dec; 15(12):640-3. PubMed ID: 16242932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected cross talk: small GTPase regulation of calcium channel trafficking.
    Trimmer JS
    Sci STKE; 2002 Jan; 2002(114):pe2. PubMed ID: 11784890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases.
    Finlin BS; Crump SM; Satin J; Andres DA
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14469-74. PubMed ID: 14623965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGK small GTP-binding proteins interact with the nucleotide kinase domain of Ca2+-channel beta-subunits via an uncommon effector binding domain.
    Béguin P; Ng YJ; Krause C; Mahalakshmi RN; Ng MY; Hunziker W
    J Biol Chem; 2007 Apr; 282(15):11509-20. PubMed ID: 17303572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density.
    Chen H; Puhl HL; Niu SL; Mitchell DC; Ikeda SR
    J Neurosci; 2005 Oct; 25(42):9762-72. PubMed ID: 16237180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem.
    Béguin P; Nagashima K; Gonoi T; Shibasaki T; Takahashi K; Kashima Y; Ozaki N; Geering K; Iwanaga T; Seino S
    Nature; 2001 Jun; 411(6838):701-6. PubMed ID: 11395774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of Rem/RGK signaling and biological activity.
    Andres DA; Crump SM; Correll RN; Satin J; Finlin BS
    Methods Enzymol; 2006; 407():484-98. PubMed ID: 16757347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II.
    Moyers JS; Bilan PJ; Zhu J; Kahn CR
    J Biol Chem; 1997 May; 272(18):11832-9. PubMed ID: 9115241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases.
    Finlin BS; Shao H; Kadono-Okuda K; Guo N; Andres DA
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):223-31. PubMed ID: 10727423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplicity of protein interactions and functions of the voltage-gated calcium channel beta-subunit.
    Hidalgo P; Neely A
    Cell Calcium; 2007; 42(4-5):389-96. PubMed ID: 17629941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9.
    Piddini E; Schmid JA; de Martin R; Dotti CG
    EMBO J; 2001 Aug; 20(15):4076-87. PubMed ID: 11483511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rem GTPase interacts with the proximal CaV1.2 C-terminus and modulates calcium-dependent channel inactivation.
    Pang C; Crump SM; Jin L; Correll RN; Finlin BS; Satin J; Andres DA
    Channels (Austin); 2010; 4(3):192-202. PubMed ID: 20458179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.