These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15861220)

  • 1. Bt transgenic crops do not have favorable effects on resistant insects.
    Tabashnik BE; Carrière Y
    J Insect Sci; 2004; 4():4. PubMed ID: 15861220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).
    Schuler TH; Denholm I; Clark SJ; Stewart CN; Poppy GM
    J Insect Physiol; 2004 May; 50(5):435-43. PubMed ID: 15121457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae.
    Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM
    Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pest control and resistance management through release of insects carrying a male-selecting transgene.
    Harvey-Samuel T; Morrison NI; Walker AS; Marubbi T; Yao J; Collins HL; Gorman K; Davies TG; Alphey N; Warner S; Shelton AM; Alphey L
    BMC Biol; 2015 Jul; 13():49. PubMed ID: 26179401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S; Chandra A; Pandey KC
    J Environ Biol; 2008 Sep; 29(5):641-53. PubMed ID: 19295059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms.
    Yu HL; Li YH; Wu KM
    J Integr Plant Biol; 2011 Jul; 53(7):520-38. PubMed ID: 21564541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress on the interaction between insects and Bacillus thuringiensis crops.
    Xiao Y; Wu K
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180316. PubMed ID: 30967027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle.
    Ferry N; Mulligan EA; Stewart CN; Tabashnik BE; Port GR; Gatehouse AM
    Transgenic Res; 2006 Aug; 15(4):501-14. PubMed ID: 16906450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.
    Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing pyramided transgenic Bt crops for sustainable pest management.
    Carrière Y; Crickmore N; Tabashnik BE
    Nat Biotechnol; 2015 Feb; 33(2):161-8. PubMed ID: 25599179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.
    Catarino R; Ceddia G; Areal FJ; Park J
    Plant Biotechnol J; 2015 Jun; 13(5):601-12. PubMed ID: 25832330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella.
    Raymond B; Sayyed AH; Wright DJ
    J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bt crops and insect pests: past successes, future challenges and opportunities.
    Gassmann AJ; Hutchison WD
    GM Crops Food; 2012; 3(3):139. PubMed ID: 22892655
    [No Abstract]   [Full Text] [Related]  

  • 14. Insect resistance to transgenic Bt crops: lessons from the laboratory and field.
    Tabashnik BE; Carrière Y; Dennehy TJ; Morin S; Sisterson MS; Roush RT; Shelton AM; Zhao JZ
    J Econ Entomol; 2003 Aug; 96(4):1031-8. PubMed ID: 14503572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C.
    Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM
    J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The progress in insect cross-resistance among Bacillus thuringiensis toxins.
    Wei J; Zhang Y; An S
    Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21547. PubMed ID: 30864250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of resistance to two-toxin pyramid transgenic crops.
    Ives AR; Glaum PR; Ziebarth NL; Andow DA
    Ecol Appl; 2011 Mar; 21(2):503-15. PubMed ID: 21563580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of resistance to transgenic crops: interactions between insect movement and field distribution.
    Sisterson MS; Carrière Y; Dennehy TJ; Tabashnik BE
    J Econ Entomol; 2005 Dec; 98(6):1751-62. PubMed ID: 16539091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants.
    Shelton AM; Zhao JZ; Roush RT
    Annu Rev Entomol; 2002; 47():845-81. PubMed ID: 11729093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance and fitness costs of insect resistance to genetically modified
    Huang F
    GM Crops Food; 2021 Jan; 12(1):192-211. PubMed ID: 33380258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.