These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15861233)

  • 1. DrawWing, a program for numerical description of insect wings.
    Tofilski A
    J Insect Sci; 2004; 4():17. PubMed ID: 15861233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An image based application in Matlab for automated modelling and morphological analysis of insect wings.
    Eshghi S; Nabati F; Shafaghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Sci Rep; 2022 Aug; 12(1):13917. PubMed ID: 35977980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea.
    Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):416-422. PubMed ID: 29932971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.
    Prokop J; Pecharová M; Nel A; Hörnschemeyer T; Krzemińska E; Krzemiński W; Engel MS
    Curr Biol; 2017 Jan; 27(2):263-269. PubMed ID: 28089512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical aspects of the insect wing: an analysis using the finite element method.
    Kesel AB; Philippi U; Nachtigall W
    Comput Biol Med; 1998 Jul; 28(4):423-37. PubMed ID: 9805202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of insect wing fracture behaviour.
    Rajabi H; Darvizeh A; Shafiei A; Taylor D; Dirks JH
    J Biomech; 2015 Jan; 48(1):89-94. PubMed ID: 25468669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta).
    Jacquelin L; Desutter-Grandcolas L; Chintauan-Marquier I; Boistel R; Zheng D; Prokop J; Nel A
    Sci Rep; 2018 Jan; 8(1):238. PubMed ID: 29321486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple developmental model recapitulates complex insect wing venation patterns.
    Hoffmann J; Donoughe S; Li K; Salcedo MK; Rycroft CH
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9905-9910. PubMed ID: 30224459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality.
    Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tool for developing an automatic insect identification system based on wing outlines.
    Yang HP; Ma CS; Wen H; Zhan QB; Wang XL
    Sci Rep; 2015 Aug; 5():12786. PubMed ID: 26251292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of shape and deformation of insect wing.
    Yin D; Wei Z; Wang Z; Zhou C
    Rev Sci Instrum; 2018 Jan; 89(1):014301. PubMed ID: 29390685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of wing patterns and abdomen-generated substrate sounds in 3 European scorpionfly species.
    Hartbauer M; Gepp J; Hinteregger K; Koblmüller S
    Insect Sci; 2015 Aug; 22(4):521-31. PubMed ID: 24818592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The morphology of mouthparts, wings and genitalia of Paleozoic insect families Protohymenidae and Scytohymenidae reveals new details and supposed function.
    Pecharová M; Prokop J
    Arthropod Struct Dev; 2018 Jan; 47(1):117-129. PubMed ID: 29162495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological observations on the wing scales in some primitive Lepidoptera (Insecta).
    Kristensen NP
    J Ultrastruct Res; 1970 Feb; 30(3):402-10. PubMed ID: 5417552
    [No Abstract]   [Full Text] [Related]  

  • 19. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.
    Chintapalli RT; Hillyer JF
    J Exp Biol; 2016 Dec; 219(Pt 24):3945-3951. PubMed ID: 27742896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior.
    Thomas MA; Walsh KA; Wolf MR; McPheron BA; Marden JH
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13178-83. PubMed ID: 11078507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.