BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15861431)

  • 1. Activation of CREB by tauroursodeoxycholic acid protects cholangiocytes from apoptosis induced by mTOR inhibition.
    Wang L; Piguet AC; Schmidt K; Tordjmann T; Dufour JF
    Hepatology; 2005 Jun; 41(6):1241-51. PubMed ID: 15861431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways.
    Schoemaker MH; Conde de la Rosa L; Buist-Homan M; Vrenken TE; Havinga R; Poelstra K; Haisma HJ; Jansen PL; Moshage H
    Hepatology; 2004 Jun; 39(6):1563-73. PubMed ID: 15185297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC alpha-/PKA-dependent mechanism in rat liver.
    Wimmer R; Hohenester S; Pusl T; Denk GU; Rust C; Beuers U
    Gut; 2008 Oct; 57(10):1448-54. PubMed ID: 18583398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons.
    Castro RE; Solá S; Ramalho RM; Steer CJ; Rodrigues CM
    J Pharmacol Exp Ther; 2004 Nov; 311(2):845-52. PubMed ID: 15190125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant neuroblastoma cells.
    Ramalho RM; Borralho PM; Castro RE; Solá S; Steer CJ; Rodrigues CM
    J Neurochem; 2006 Sep; 98(5):1610-8. PubMed ID: 16923170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP-responsive element binding protein mediates a cGMP/protein kinase G-dependent anti-apoptotic signal induced by nitric oxide in retinal neuro-glial progenitor cells.
    Nagai-Kusuhara A; Nakamura M; Mukuno H; Kanamori A; Negi A; Seigel GM
    Exp Eye Res; 2007 Jan; 84(1):152-62. PubMed ID: 17081519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of Tauroursodeoxycholic acid on cytochrome C-mediated apoptosis in HepG2 cells].
    Xie Q; Li GM; Zhou XQ; Liao D; Yu H; Guo Q
    Zhonghua Gan Zang Bing Za Zhi; 2003 May; 11(5):298-301. PubMed ID: 12773247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha.
    Alpini G; Baiocchi L; Glaser S; Ueno Y; Marzioni M; Francis H; Phinizy JL; Angelico M; Lesage G
    Hepatology; 2002 May; 35(5):1041-52. PubMed ID: 11981754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts.
    Marzioni M; Francis H; Benedetti A; Ueno Y; Fava G; Venter J; Reichenbach R; Mancino MG; Summers R; Alpini G; Glaser S
    Am J Pathol; 2006 Feb; 168(2):398-409. PubMed ID: 16436655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGF-I and vasoactive intestinal peptide (VIP) regulate cAMP-response element-binding protein (CREB)-dependent transcription via the mitogen-activated protein kinase (MAPK) pathway in pituitary cells: requirement of Rap1.
    Fernández M; Sánchez-Franco F; Palacios N; Sánchez I; Cacicedo L
    J Mol Endocrinol; 2005 Jun; 34(3):699-712. PubMed ID: 15956341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and regulation of gap junctions in rat cholangiocytes.
    Bode HP; Wang L; Cassio D; Leite MF; St-Pierre MV; Hirata K; Okazaki K; Sears ML; Meda P; Nathanson MH; Dufour JF
    Hepatology; 2002 Sep; 36(3):631-40. PubMed ID: 12198655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes.
    Castro RE; Amaral JD; Solá S; Kren BT; Steer CJ; Rodrigues CM
    Am J Physiol Gastrointest Liver Physiol; 2007 Jul; 293(1):G327-34. PubMed ID: 17431217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CREB phosphorylation promotes nerve cell survival.
    Walton M; Woodgate AM; Muravlev A; Xu R; During MJ; Dragunow M
    J Neurochem; 1999 Nov; 73(5):1836-42. PubMed ID: 10537041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of amyloid-β peptide-induced toxicity through inhibition of JNK nuclear localization and caspase-2 activation.
    Viana RJ; Ramalho RM; Nunes AF; Steer CJ; Rodrigues CM
    J Alzheimers Dis; 2010; 22(2):557-68. PubMed ID: 20847398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB.
    Maldonado C; Cea P; Adasme T; Collao A; Díaz-Araya G; Chiong M; Lavandero S
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1112-8. PubMed ID: 16168389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoprotective effect of tauroursodeoxycholate on hepatocyte apoptosis induced by peroxisome proliferator-activated receptor gamma ligand.
    Nonaka M; Tazuma S; Hyogo H; Kanno K; Chayama K
    J Gastroenterol Hepatol; 2008 Jul; 23(7 Pt 2):e198-206. PubMed ID: 17868335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of CaSki cells to paclitaxel.
    Faried LS; Faried A; Kanuma T; Nakazato T; Tamura T; Kuwano H; Minegishi T
    Eur J Cancer; 2006 May; 42(7):934-47. PubMed ID: 16540312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis.
    Yan H; Frost P; Shi Y; Hoang B; Sharma S; Fisher M; Gera J; Lichtenstein A
    Cancer Res; 2006 Feb; 66(4):2305-13. PubMed ID: 16489035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetaldehyde promotes rapamycin-dependent activation of p70(S6K) and glucose uptake despite inhibition of Akt and mTOR in dopaminergic SH-SY5Y human neuroblastoma cells.
    Fang CX; Yang X; Sreejayan N; Ren J
    Exp Neurol; 2007 Jan; 203(1):196-204. PubMed ID: 16962100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis.
    Shor B; Zhang WG; Toral-Barza L; Lucas J; Abraham RT; Gibbons JJ; Yu K
    Cancer Res; 2008 Apr; 68(8):2934-43. PubMed ID: 18413763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.