These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Varshney SK; Fujisawa T; Saitoh K; Koshiba M Opt Express; 2006 Apr; 14(8):3528-40. PubMed ID: 19516499 [TBL] [Abstract][Full Text] [Related]
3. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Varshney S; Fujisawa T; Saitoh K; Koshiba M Opt Express; 2005 Nov; 13(23):9516-26. PubMed ID: 19503154 [TBL] [Abstract][Full Text] [Related]
4. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band. Sasaki K; Varshney SK; Wada K; Saitoh K; Koshiba M Opt Express; 2007 Mar; 15(5):2654-68. PubMed ID: 19532502 [TBL] [Abstract][Full Text] [Related]
5. Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength. Maji PS; Chaudhuri PR Appl Opt; 2015 Apr; 54(11):3263-72. PubMed ID: 25967312 [TBL] [Abstract][Full Text] [Related]
6. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers. Saitoh K; Varshney SK; Koshiba M Opt Express; 2007 Dec; 15(26):17724-35. PubMed ID: 19551069 [TBL] [Abstract][Full Text] [Related]
8. Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra. Marhic ME; Park Y; Yang FS; Kazovsky LG Opt Lett; 1996 Sep; 21(17):1354-6. PubMed ID: 19876350 [TBL] [Abstract][Full Text] [Related]
9. Dynamic properties of single pump, dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump. Lee J; Chang Y; Han YG; Kim S; Lee S Opt Express; 2004 Dec; 12(26):6594-9. PubMed ID: 19488310 [TBL] [Abstract][Full Text] [Related]
10. Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530-1605 nm. Li J; Wang L; Du J; Jiang S; Ma L; Cai C; Zhu L; Wang A; Li MJ; Chen H; Wang J; He Z Opt Lett; 2018 Sep; 43(18):4530-4533. PubMed ID: 30211908 [TBL] [Abstract][Full Text] [Related]
11. Photonic crystal fiber for dispersion compensation. Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310 [TBL] [Abstract][Full Text] [Related]
14. 12 THz flat gain fiber optical parametric amplifiers with dispersion varying fibers. Fourcade-Dutin C; Bassery Q; Bigourd D; Bendahmane A; Kudlinski A; Douay M; Mussot A Opt Express; 2015 Apr; 23(8):10103-10. PubMed ID: 25969052 [TBL] [Abstract][Full Text] [Related]
15. Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers. Pande K; Pal BP Appl Opt; 2003 Jul; 42(19):3785-91. PubMed ID: 12868816 [TBL] [Abstract][Full Text] [Related]
16. Pump scheme for gain-flattened Raman fiber amplifiers using improved particle swarm optimization and modified shooting algorithm. Jiang HM; Xie K; Wang YF Opt Express; 2010 May; 18(11):11033-45. PubMed ID: 20588959 [TBL] [Abstract][Full Text] [Related]
17. Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps. Chestnut DA; Taylor JR Opt Lett; 2003 Dec; 28(23):2294-6. PubMed ID: 14680160 [TBL] [Abstract][Full Text] [Related]
18. Wide bandwidth flat gain Raman amplifier by using polarization-independent interferometric filter. Tio A; Shum P; Gong Y Opt Express; 2003 Nov; 11(23):2991-6. PubMed ID: 19471420 [TBL] [Abstract][Full Text] [Related]
19. Broadband dispersion compensating ring-core fiber for orbital angular momentum modes. Zhao W; Han X; Geng W; Wang Y; Fang Y; Bao C; Wang Z; Liu YG; Ren Y; Pan Z; Yue Y Opt Express; 2022 Sep; 30(20):35457-35466. PubMed ID: 36258496 [TBL] [Abstract][Full Text] [Related]