These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 15862088)

  • 61. Engineering PGPMOs through Gene Editing and Systems Biology: A Solution for Phytoremediation?
    Basu S; Rabara RC; Negi S; Shukla P
    Trends Biotechnol; 2018 May; 36(5):499-510. PubMed ID: 29455935
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Plants disarm soil: engineering plants for the phytoremediation of explosives.
    Rylott EL; Bruce NC
    Trends Biotechnol; 2009 Feb; 27(2):73-81. PubMed ID: 19110329
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Basic processes in phytoremediation and some applications to air pollution control.
    Morikawa H; Erkin OC
    Chemosphere; 2003 Sep; 52(9):1553-8. PubMed ID: 12867188
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A user-friendly phytoremediation database: creating the searchable database, the users, and the broader implications.
    Famulari S; Witz K
    Int J Phytoremediation; 2015; 17(8):737-44. PubMed ID: 26030361
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancing phytoremediation through the use of transgenics and endophytes.
    Doty SL
    New Phytol; 2008 Jul; 179(2):318-333. PubMed ID: 19086174
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Status, progress and challenges of phytoremediation - An African scenario.
    Odoh CK; Zabbey N; Sam K; Eze CN
    J Environ Manage; 2019 May; 237():365-378. PubMed ID: 30818239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.
    Stępniewska Z; Kuźniar A
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9589-96. PubMed ID: 24048641
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct volatilization of naphthalene to the atmosphere at a phytoremediation site.
    Marr LC; Booth EC; Andersen RG; Widdowson MA; Novak JT
    Environ Sci Technol; 2006 Sep; 40(17):5560-6. PubMed ID: 16999140
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms.
    Rahman S; Kim KH; Saha SK; Swaraz AM; Paul DK
    J Environ Manage; 2014 Feb; 134():175-85. PubMed ID: 24509286
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides.
    Dash DM; Osborne WJ
    Chemosphere; 2023 Feb; 313():137506. PubMed ID: 36526134
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy.
    Somu P; Narayanasamy S; Gomez LA; Rajendran S; Lee YR; Balakrishnan D
    Environ Res; 2022 Sep; 212(Pt D):113411. PubMed ID: 35561819
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern.
    Hedgespeth ML; Nichols EG
    Int J Phytoremediation; 2019; 21(14):1385-1396. PubMed ID: 31257906
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace.
    Zhang Y; Li C; Ji X; Yun C; Wang M; Luo X
    Environ Sci Pollut Res Int; 2020 May; 27(13):15515-15536. PubMed ID: 32078132
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preface. 11th International Phytotechnologies Conference, Heraklion, Crete, Greece, September 30-October 3, 2014.
    Kalogerakis N; Manios T; Manousaki E
    Int J Phytoremediation; 2016; 18(6):535. PubMed ID: 27008463
    [No Abstract]   [Full Text] [Related]  

  • 75. Bioavailability of pollutants and chemotaxis.
    Krell T; Lacal J; Reyes-Darias JA; Jimenez-Sanchez C; Sungthong R; Ortega-Calvo JJ
    Curr Opin Biotechnol; 2013 Jun; 24(3):451-6. PubMed ID: 22981870
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phase I xenobiotic metabolic systems in plants.
    Komives T; Gullner G
    Z Naturforsch C J Biosci; 2005; 60(3-4):179-85. PubMed ID: 15948581
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Remediation of atmospheric sulfur and ammonia by wetland plants: development of a study method.
    Kanté M; Lemauviel-Lavenant S; Cliquet JB
    Int J Phytoremediation; 2022; 24(4):373-383. PubMed ID: 35180015
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Breeding mercury-breathing plants for environmental cleanup.
    Pilon-Smits E; Pilon M
    Trends Plant Sci; 2000 Jun; 5(6):235-6. PubMed ID: 10838612
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments.
    Mastretta C; Barac T; Vangronsveld J; Newman L; Taghavi S; Van der Lelie D
    Biotechnol Genet Eng Rev; 2006; 23():175-207. PubMed ID: 22530508
    [No Abstract]   [Full Text] [Related]  

  • 80. Treatment methods for the remediation of nitroaromatic explosives.
    Rodgers JD; Bunce NJ
    Water Res; 2001 Jun; 35(9):2101-11. PubMed ID: 11358288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.