These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15862168)

  • 21. S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus.
    Lee SC; Telkes I; Grünert U
    Eur J Neurosci; 2005 Jul; 22(2):437-47. PubMed ID: 16045497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and molecular characterization of cGMP-gated ion channels from rod and cone photoreceptors of striped bass ( M. saxatilis ) retina.
    Paillart C; Zhang K; Rebrik TI; Baehr W; Korenbrot JI
    Vis Neurosci; 2006; 23(1):99-113. PubMed ID: 16597354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods.
    Haverkamp S; Specht D; Majumdar S; Zaidi NF; Brandstätter JH; Wasco W; Wässle H; Tom Dieck S
    J Comp Neurol; 2008 Mar; 507(1):1087-101. PubMed ID: 18095322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-wave sensitivity in the masked greenling (Hexagrammos octogrammus), a shallow-water marine fish.
    Kondrashev SL
    Vision Res; 2008 Sep; 48(21):2269-74. PubMed ID: 18675840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbohydrates in rod and cone light absorbing segments in the firemouth cichlid Thorichthys meeki retina.
    Leknes IL
    J Fish Biol; 2011 Dec; 79(7):2067-73. PubMed ID: 22141906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa).
    New ST; Hemmi JM; Kerr GD; Bull CM
    Anat Rec (Hoboken); 2012 Oct; 295(10):1727-35. PubMed ID: 22847828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors.
    Glushakova LG; Timmers AM; Pang J; Teusner JT; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3505-13. PubMed ID: 16877422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina.
    Mataruga A; Kremmer E; Müller F
    J Comp Neurol; 2007 Jun; 502(6):1123-37. PubMed ID: 17447251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological characterization of the retinal degeneration in three strains of mice carrying the rd-3 mutation.
    Linberg KA; Fariss RN; Heckenlively JR; Farber DB; Fisher SK
    Vis Neurosci; 2005; 22(6):721-34. PubMed ID: 16469183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation.
    Haider NB; Demarco P; Nystuen AM; Huang X; Smith RS; McCall MA; Naggert JK; Nishina PM
    Vis Neurosci; 2006; 23(6):917-29. PubMed ID: 17266784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation.
    Pinilla I; Lund RD; Sauvé Y
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):16-21. PubMed ID: 15911114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival.
    Chrysostomou V; Stone J; Valter K
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2407-16. PubMed ID: 19117918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the stability of the human cone visual pigments.
    Ramon E; Mao X; Ridge KD
    Photochem Photobiol; 2009; 85(2):509-16. PubMed ID: 19192203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional and structural changes in the retina of wire-haired dachshunds with early-onset cone-rod dystrophy.
    Ropstad EO; Narfström K; Lingaas F; Wiik C; Bruun A; Bjerkås E
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1106-15. PubMed ID: 18326738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional variation within the interphotoreceptor matrix from fovea to the retinal periphery.
    Hollyfield JG; Varner HH; Rayborn ME
    Eye (Lond); 1990; 4 ( Pt 2)():333-9. PubMed ID: 2199241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunolocalization of X-arrestin in human cone photoreceptors.
    Sakuma H; Inana G; Murakami A; Higashide T; McLaren MJ
    FEBS Lett; 1996 Mar; 382(1-2):105-10. PubMed ID: 8612728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Late stages of visual pigment photolysis in situ: cones vs. rods.
    Golobokova EY; Govardovskii VI
    Vision Res; 2006 Jul; 46(14):2287-97. PubMed ID: 16473387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.