BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15862286)

  • 1. Adaptive evolution of MRGX2, a human sensory neuron specific gene involved in nociception.
    Yang S; Liu Y; Lin AA; Cavalli-Sforza LL; Zhao Z; Su B
    Gene; 2005 Jun; 352():30-5. PubMed ID: 15862286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Origin, Expression, Function and Future Research Focus of a G Protein-coupled Receptor, Mas-related Gene X2 (MrgX2).
    Wu H; Zeng M; Cho EY; Jiang W; Sha O
    Prog Histochem Cytochem; 2015 Jul; 50(1-2):11-7. PubMed ID: 26106044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The testis-specific apoptosis related gene TTL.6 underwent adaptive evolution in the lineage leading to humans.
    Chen XH; Shi H; Liu XL; Su B
    Gene; 2006 Mar; 370():58-63. PubMed ID: 16443334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of microcephalin, a gene determining human brain size.
    Wang YQ; Su B
    Hum Mol Genet; 2004 Jun; 13(11):1131-7. PubMed ID: 15056608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proadrenomedullin N-terminal peptide and cortistatin activation of MrgX2 receptor is based on a common structural motif.
    Nothacker HP; Wang Z; Zeng H; Mahata SK; O'Connor DT; Civelli O
    Eur J Pharmacol; 2005 Sep; 519(1-2):191-3. PubMed ID: 16111673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signatures of selection in the human olfactory receptor OR5I1 gene.
    Moreno-Estrada A; Casals F; Ramírez-Soriano A; Oliva B; Calafell F; Bertranpetit J; Bosch E
    Mol Biol Evol; 2008 Jan; 25(1):144-54. PubMed ID: 17981927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of MrgX2 as a human G-protein-coupled receptor for proadrenomedullin N-terminal peptides.
    Kamohara M; Matsuo A; Takasaki J; Kohda M; Matsumoto M; Matsumoto S; Soga T; Hiyama H; Kobori M; Katou M
    Biochem Biophys Res Commun; 2005 May; 330(4):1146-52. PubMed ID: 15823563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution of primate TRIM5alpha, a gene restricting HIV-1 infection.
    Liu HL; Wang YQ; Liao CH; Kuang YQ; Zheng YT; Su B
    Gene; 2005 Dec; 362():109-16. PubMed ID: 16226405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Episodic adaptive evolution of primate lysozymes.
    Messier W; Stewart CB
    Nature; 1997 Jan; 385(6612):151-4. PubMed ID: 8990116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cortistatin and MrgX2, a specific cortistatin receptor, in human neuroendocrine tissues and related tumours.
    Allia E; Tarabra E; Volante M; Cerrato M; Ghigo E; Muccioli G; Papotti M
    J Pathol; 2005 Nov; 207(3):336-45. PubMed ID: 16161007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence evolution, processing, and posttranslational modification of zonadhesin D domains in primates, as inferred from cDNA data.
    Herlyn H; Zischler H
    Gene; 2005 Dec; 362():85-97. PubMed ID: 16185823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans.
    Evans PD; Anderson JR; Vallender EJ; Gilbert SL; Malcom CM; Dorus S; Lahn BT
    Hum Mol Genet; 2004 Mar; 13(5):489-94. PubMed ID: 14722158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca).
    Wan QH; Zhu L; Wu H; Fang SG
    Mol Ecol; 2006 Aug; 15(9):2441-50. PubMed ID: 16842418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive evolution after duplication of penaeidin antimicrobial peptides.
    Padhi A; Verghese B; Otta SK; Varghese B; Ramu K
    Fish Shellfish Immunol; 2007 Sep; 23(3):553-66. PubMed ID: 17449277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and evolution of gene for prolactin-induced protein.
    Kitano T; Tian W; Umetsu K; Yuasa I; Yamazaki K; Saitou N; Osawa M
    Gene; 2006 Nov; 383():64-70. PubMed ID: 16949771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner gene of Western and Asian honeybees.
    Hasselmann M; Vekemans X; Pflugfelder J; Koeniger N; Koeniger G; Tingek S; Beye M
    Mol Biol Evol; 2008 Apr; 25(4):696-708. PubMed ID: 18192695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic diversity and function in the human cytosolic sulfotransferases.
    Hildebrandt MA; Carrington DP; Thomae BA; Eckloff BW; Schaid DJ; Yee VC; Weinshilboum RM; Wieben ED
    Pharmacogenomics J; 2007 Apr; 7(2):133-43. PubMed ID: 16801938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated evolution and loss of a domain of the sperm-egg-binding protein SED1 in ancestral primates.
    Podlaha O; Webb DM; Zhang J
    Mol Biol Evol; 2006 Oct; 23(10):1828-31. PubMed ID: 16864605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates.
    Filip LC; Mundy NI
    Mol Biol Evol; 2004 Aug; 21(8):1504-11. PubMed ID: 15014144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.