BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15862512)

  • 1. Capsaicin augments synaptic transmission in the rat medial preoptic nucleus.
    Karlsson U; Sundgren-Andersson AK; Johansson S; Krupp JJ
    Brain Res; 2005 May; 1043(1-2):1-11. PubMed ID: 15862512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient receptor potential vanilloid type 1 receptor regulates glutamatergic synaptic inputs to the spinothalamic tract neurons of the spinal cord deep dorsal horn.
    Kim H; Cui L; Kim J; Kim SJ
    Neuroscience; 2009 May; 160(2):508-16. PubMed ID: 19236908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):871-82. PubMed ID: 17108089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of resiniferatoxin on glutamatergic spontaneous excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord.
    Jiang CY; Fujita T; Yue HY; Piao LH; Liu T; Nakatsuka T; Kumamoto E
    Neuroscience; 2009 Dec; 164(4):1833-44. PubMed ID: 19778582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons.
    Xing J; Li J
    J Neurophysiol; 2007 Jan; 97(1):503-11. PubMed ID: 17065246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons.
    Kitamura A; Marszalec W; Yeh JZ; Narahashi T
    J Pharmacol Exp Ther; 2003 Jan; 304(1):162-71. PubMed ID: 12490587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons.
    Uchida S; Noda E; Kakazu Y; Mizoguchi Y; Akaike N; Nabekura J
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1257-65. PubMed ID: 12424107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of propofol on substantia gelatinosa neurones in rat spinal cord revealed by in vitro and in vivo patch-clamp recordings.
    Takazawa T; Furue H; Nishikawa K; Uta D; Takeshima K; Goto F; Yoshimura M
    Eur J Neurosci; 2009 Feb; 29(3):518-28. PubMed ID: 19222560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: a possible involvement of presynaptic calcium channels.
    Xiao C; Gu Y; Zhou CY; Wang L; Zhang MM; Ruan DY
    Brain Res; 2006 May; 1088(1):93-100. PubMed ID: 16630593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn.
    Fukushima T; Ohtsubo T; Tsuda M; Yanagawa Y; Hori Y
    J Neurophysiol; 2009 Sep; 102(3):1459-71. PubMed ID: 19369358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons.
    Matsuo S; Jang IS; Nabekura J; Akaike N
    J Neurophysiol; 2003 Mar; 89(3):1640-8. PubMed ID: 12626630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential control of spontaneous and evoked GABA release by presynaptic L-type Ca(2+) channels in the rat medial preoptic nucleus.
    Malinina E; Druzin M; Johansson S
    J Neurophysiol; 2010 Jul; 104(1):200-9. PubMed ID: 20463198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kainate receptor activation potentiates GABAergic synaptic transmission in the nucleus accumbens core.
    Crowder TL; Ariwodola OJ; Weiner JL
    Brain Res; 2006 May; 1088(1):73-82. PubMed ID: 16626659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus.
    Li DP; Chen SR; Pan HL
    J Neurophysiol; 2004 Sep; 92(3):1807-16. PubMed ID: 15115794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast neurotransmission in the rat medial preoptic nucleus.
    Malinina E; Druzin M; Johansson S
    Brain Res; 2005 Apr; 1040(1-2):157-68. PubMed ID: 15804437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus.
    Dergacheva O; Wang X; Huang ZG; Bouairi E; Stephens C; Gorini C; Mendelowitz D
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1322-7. PubMed ID: 15947034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse.
    Ferrini F; Salio C; Vergnano AM; Merighi A
    Pain; 2007 May; 129(1-2):195-209. PubMed ID: 17317009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phorbol ester uncouples adenosine inhibition of presynaptic Ca2+ transients at hippocampal synapses.
    Stocca G; Lovinger DM
    Hippocampus; 2003; 13(3):355-60. PubMed ID: 12722976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory synaptic transmission in area postrema neurons of the rat showing robust presynaptic facilitation mediated by nicotinic ACh receptors.
    Kawa K
    Brain Res; 2007 Jan; 1130(1):83-94. PubMed ID: 17166488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord.
    Oz M; Yang KH; O'donovan MJ; Renaud LP
    J Neurophysiol; 2005 Aug; 94(2):1405-12. PubMed ID: 16061493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.