These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 15862605)
1. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes. Clement B; Behrens D; Amschler J; Matschke K; Wolf S; Havemeyer A Life Sci; 2005 May; 77(2):205-19. PubMed ID: 15862605 [TBL] [Abstract][Full Text] [Related]
2. NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans. Kurian JR; Bajad SU; Miller JL; Chin NA; Trepanier LA J Pharmacol Exp Ther; 2004 Dec; 311(3):1171-8. PubMed ID: 15302896 [TBL] [Abstract][Full Text] [Related]
3. N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. Cribb AE; Spielberg SP; Griffin GP Drug Metab Dispos; 1995 Mar; 23(3):406-14. PubMed ID: 7628308 [TBL] [Abstract][Full Text] [Related]
4. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction. Sacco JC; Trepanier LA Pharmacogenet Genomics; 2010 Jan; 20(1):26-37. PubMed ID: 19997042 [TBL] [Abstract][Full Text] [Related]
6. Reduction of sulfamethoxazole hydroxylamine (SMX-HA) by the mitochondrial amidoxime reducing component (mARC). Ott G; Plitzko B; Krischkowski C; Reichmann D; Bittner F; Mendel RR; Kunze T; Clement B; Havemeyer A Chem Res Toxicol; 2014 Oct; 27(10):1687-95. PubMed ID: 25170804 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of the protein components of the liver microsomal O2-insensitive NADH-benzamidoxime reductase. Clement B; Lomb R; Möller W J Biol Chem; 1997 Aug; 272(31):19615-20. PubMed ID: 9235969 [TBL] [Abstract][Full Text] [Related]
8. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction. Yang MX; Cederbaum AI Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species generation and its role in the differential cytotoxicity of the arylhydroxylamine metabolites of sulfamethoxazole and dapsone in normal human epidermal keratinocytes. Vyas PM; Roychowdhury S; Woster PM; Svensson CK Biochem Pharmacol; 2005 Jul; 70(2):275-86. PubMed ID: 15894292 [TBL] [Abstract][Full Text] [Related]
10. Hepatic, extrahepatic, microsomal, and mitochondrial activation of the N-hydroxylated prodrugs benzamidoxime, guanoxabenz, and Ro 48-3656 ([[1-[(2s)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid). Clement B; Mau S; Deters S; Havemeyer A Drug Metab Dispos; 2005 Nov; 33(11):1740-7. PubMed ID: 16118330 [TBL] [Abstract][Full Text] [Related]
11. Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase. Saulter JY; Kurian JR; Trepanier LA; Tidwell RR; Bridges AS; Boykin DW; Stephens CE; Anbazhagan M; Hall JE Drug Metab Dispos; 2005 Dec; 33(12):1886-93. PubMed ID: 16131524 [TBL] [Abstract][Full Text] [Related]
12. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes. Clement B; Behrens D; Möller W; Cashman JR Chem Res Toxicol; 2000 Oct; 13(10):1037-45. PubMed ID: 11080052 [TBL] [Abstract][Full Text] [Related]
13. Methemoglobin formation by hydroxylamine metabolites of sulfamethoxazole and dapsone: implications for differences in adverse drug reactions. Reilly TP; Woster PM; Svensson CK J Pharmacol Exp Ther; 1999 Mar; 288(3):951-9. PubMed ID: 10027831 [TBL] [Abstract][Full Text] [Related]
14. Fractionation of liver microsomes with polyethylene glycol and purification of NADH-cytochrome b5 oxidoreductase and cytochrome b5. Yang MX; Cederbaum AI Arch Biochem Biophys; 1994 Dec; 315(2):438-44. PubMed ID: 7986089 [TBL] [Abstract][Full Text] [Related]
15. The role of microsomal cytochrome b5 in the metabolism of ethanol, drugs and the desaturation of fatty acids. Ozols J Ann Clin Res; 1976; 8 Suppl 17():182-92. PubMed ID: 12714 [TBL] [Abstract][Full Text] [Related]
16. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5. Mahmutoglu I; Kappus H Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594 [TBL] [Abstract][Full Text] [Related]
17. Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties. Tamura M; Yubisui T; Takeshita M J Biochem; 1983 Nov; 94(5):1547-55. PubMed ID: 6654871 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-insensitive enzymatic reduction of oximes to imines. Heberling S; Girreser U; Wolf S; Clement B Biochem Pharmacol; 2006 Jan; 71(3):354-65. PubMed ID: 16324684 [TBL] [Abstract][Full Text] [Related]
19. Formation of guanoxabenz from guanabenz in human liver. A new metabolic marker for CYP1A2. Clement B; Demesmaeker M Drug Metab Dispos; 1997 Nov; 25(11):1266-71. PubMed ID: 9351903 [TBL] [Abstract][Full Text] [Related]
20. Reduction of Nomega-hydroxy-L-arginine to L-arginine by pig liver microsomes, mitochondria, and human liver microsomes. Clement B; Kunze T; Heberling S Biochem Biophys Res Commun; 2006 Oct; 349(2):869-73. PubMed ID: 16959215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]