BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15862914)

  • 1. A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.
    Kruger W; Gilbert D; Hawthorne R; Hryciw DH; Frings S; Poronnik P; Lynch JW
    Neurosci Lett; 2005 Jun; 380(3):340-5. PubMed ID: 15862914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropisetron modulation of the glycine receptor: femtomolar potentiation and a molecular determinant of inhibition.
    Yang Z; Ney A; Cromer BA; Ng HL; Parker MW; Lynch JW
    J Neurochem; 2007 Feb; 100(3):758-69. PubMed ID: 17181559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride homeostasis differentially affects GABA(A) receptor- and glycine receptor-mediated effects on spontaneous circuit activity in hippocampal cell culture.
    Wang W; Xu TL
    Neurosci Lett; 2006 Oct; 406(1-2):11-6. PubMed ID: 16905250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry.
    Gilbert DF; Wilson JC; Nink V; Lynch JW; Osborne GW
    Cytometry A; 2009 May; 75(5):440-9. PubMed ID: 19184990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and microARCS technologies: identification of ion channel modulators acting on the GABA(A) receptor.
    Joesch C; Guevarra E; Parel SP; Bergner A; Zbinden P; Konrad D; Albrecht H
    J Biomol Screen; 2008 Mar; 13(3):218-28. PubMed ID: 18270364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yellow fluorescent protein-based assay to measure GABA(A) channel activation and allosteric modulation in CHO-K1 cells.
    Johansson T; Norris T; Peilot-Sjögren H
    PLoS One; 2013; 8(3):e59429. PubMed ID: 23516634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polychlorocycloalkane insecticide action on GABA-and glycine-dependent chloride flux.
    Suñol C; Vale C; Rodríguez-Farré E
    Neurotoxicology; 1998; 19(4-5):573-80. PubMed ID: 9745914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a colorimetric method for functional chloride channel assay.
    Tang W; Wildey MJ
    J Biomol Screen; 2004 Oct; 9(7):607-13. PubMed ID: 15475480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different modes of action of pentobarbital at glycine receptor channels.
    Mohammadi B; Krampfl K; Cetinkaya C; Wolfes H; Bufler J
    Eur J Pharmacol; 2004 Apr; 489(3):151-6. PubMed ID: 15087237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors.
    Popik P; Kostakis E; Krawczyk M; Nowak G; Szewczyk B; Krieter P; Chen Z; Russek SJ; Gibbs TT; Farb DH; Skolnick P; Lippa AS; Basile AS
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1244-52. PubMed ID: 16971504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycinergic transmission.
    Kirsch J
    Cell Tissue Res; 2006 Nov; 326(2):535-40. PubMed ID: 16807723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.
    De La Fuente R; Namkung W; Mills A; Verkman AS
    Mol Pharmacol; 2008 Mar; 73(3):758-68. PubMed ID: 18083779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory ligand-gated ion channels as substrates for general anesthetic actions.
    Zeller A; Jurd R; Lambert S; Arras M; Drexler B; Grashoff C; Antkowiak B; Rudolph U
    Handb Exp Pharmacol; 2008; (182):31-51. PubMed ID: 18175085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the expression of recombinant alphabetagamma GABAA receptors in HEK293 cells for high-throughput screening.
    Gilbert D; Esmaeili A; Lynch JW
    J Biomol Screen; 2009 Jan; 14(1):86-91. PubMed ID: 19171924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAA receptor heterogeneity, function, and implications for epilepsy.
    Benarroch EE
    Neurology; 2007 Feb; 68(8):612-4. PubMed ID: 17310035
    [No Abstract]   [Full Text] [Related]  

  • 16. Fluorescence quantitation of thyrocyte iodide accumulation with the yellow fluorescent protein variant YFP-H148Q/I152L.
    Rhoden KJ; Cianchetta S; Duchi S; Romeo G
    Anal Biochem; 2008 Feb; 373(2):239-46. PubMed ID: 18021945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desensitization of GABA(B) receptor signaling by formation of protein complexes of GABA(B2) subunit with GRK4 or GRK5.
    Kanaide M; Uezono Y; Matsumoto M; Hojo M; Ando Y; Sudo Y; Sumikawa K; Taniyama K
    J Cell Physiol; 2007 Jan; 210(1):237-45. PubMed ID: 17013811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.
    Ghavanini AA; Mathers DA; Puil E
    Neuropharmacology; 2005 Sep; 49(3):338-49. PubMed ID: 15993440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of cell lines for high-throughput screening of human neuromedin U receptor subtype 2 specific agonists using a luciferase reporter gene assay.
    Li X; Shen F; Zhang Y; Zhu J; Huang L; Shi Q
    Eur J Pharm Biopharm; 2007 Aug; 67(1):284-92. PubMed ID: 17337170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a universal high-throughput calcium assay for G-protein- coupled receptors with promiscuous G-protein Galpha15/16.
    Zhu T; Fang LY; Xie X
    Acta Pharmacol Sin; 2008 Apr; 29(4):507-16. PubMed ID: 18358098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.