BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1212 related articles for article (PubMed ID: 15862922)

  • 1. Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus.
    Moses SN; Cole C; Ryan JD
    Brain Res Bull; 2005 May; 65(6):501-12. PubMed ID: 15862922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional difference between rat perirhinal cortex and hippocampus in object and place discrimination tasks.
    Abe H; Ishida Y; Nonaka H; Iwasaki T
    Behav Brain Res; 2009 Feb; 197(2):388-97. PubMed ID: 18984009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior.
    Faraji J; Lehmann H; Metz GA; Sutherland RJ
    Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation between the hippocampus and the entorhinal cortex in spatial memory: a disconnection study.
    Parron C; Poucet B; Save E
    Behav Brain Res; 2006 Jun; 170(1):99-109. PubMed ID: 16540184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical tests of the functional significance of amygdala-based modulation of hippocampal representations: evidence for multiple memory consolidation pathways.
    McDonald RJ; Lo Q; King AL; Wasiak TD; Hong NS
    Eur J Neurosci; 2007 Mar; 25(5):1568-80. PubMed ID: 17425583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition or performance of tests of allocentric spatial memory.
    Machin P; Vann SD; Muir JL; Aggleton JP
    Behav Neurosci; 2002 Apr; 116(2):232-40. PubMed ID: 11996309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate.
    Cain DP; Boon F; Corcoran ME
    Behav Brain Res; 2006 Jun; 170(2):241-56. PubMed ID: 16569442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incidental (unreinforced) and reinforced spatial learning in rats with ventral and dorsal lesions of the hippocampus.
    Gaskin S; Gamliel A; Tardif M; Cole E; Mumby DG
    Behav Brain Res; 2009 Aug; 202(1):64-70. PubMed ID: 19447282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats.
    Detour J; Schroeder H; Desor D; Nehlig A
    Epilepsia; 2005 Apr; 46(4):499-508. PubMed ID: 15816943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats.
    Kesner RP; Hunsaker MR; Warthen MW
    Behav Neurosci; 2008 Dec; 122(6):1217-25. PubMed ID: 19045941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.
    Ramos JM; Vaquero JM
    Physiol Behav; 2005 Sep; 86(1-2):118-27. PubMed ID: 16098545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential contribution of hippocampus, perirhinal cortex and postrhinal cortex to allocentric spatial memory in the radial maze.
    Ramos JM
    Behav Brain Res; 2013 Jun; 247():59-64. PubMed ID: 23511252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex.
    Steffenach HA; Witter M; Moser MB; Moser EI
    Neuron; 2005 Jan; 45(2):301-13. PubMed ID: 15664181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rats with hippocampal damage are impaired on place learning in the water task when overtrained under constrained conditions.
    McDonald RJ; Hong NS
    Hippocampus; 2000; 10(2):153-61. PubMed ID: 10791837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional cooperation between the hippocampal subregions and the medial septum in unreinforced and reinforced spatial memory tasks.
    Okada K; Okaichi H
    Behav Brain Res; 2010 Jun; 209(2):295-304. PubMed ID: 20144657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI.
    Köhler S; Danckert S; Gati JS; Menon RS
    Hippocampus; 2005; 15(6):763-74. PubMed ID: 15999342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired water maze navigation of Wistar rats with retrosplenial cortex lesions: effect of nonspatial pretraining.
    Lukoyanov NV; Lukoyanova EA; Andrade JP; Paula-Barbosa MM
    Behav Brain Res; 2005 Mar; 158(1):175-82. PubMed ID: 15680205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task.
    Sloan HL; Good M; Dunnett SB
    Behav Brain Res; 2006 Jul; 171(1):116-26. PubMed ID: 16677723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential contributions of hippocampus, amygdala and perirhinal cortex to recognition of novel objects, contextual stimuli and stimulus relationships.
    Moses SN; Cole C; Driscoll I; Ryan JD
    Brain Res Bull; 2005 Sep; 67(1-2):62-76. PubMed ID: 16140164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perirhinal cortex and anterior thalamic lesions: comparative effects on learning and memory.
    Moran JP; Dalrymple-Alford JC
    Behav Neurosci; 2003 Dec; 117(6):1326-41. PubMed ID: 14674851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.