BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 15863235)

  • 1. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.
    de Visser L; van den Bos R; Spruijt BM
    Behav Brain Res; 2005 May; 160(2):382-8. PubMed ID: 15863235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice.
    de Visser L; van den Bos R; Stoker AK; Kas MJ; Spruijt BM
    Behav Brain Res; 2007 Feb; 177(2):290-7. PubMed ID: 17174413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach to the behavioural characterization of inbred mice: automated home cage observations.
    de Visser L; van den Bos R; Kuurman WW; Kas MJ; Spruijt BM
    Genes Brain Behav; 2006 Aug; 5(6):458-66. PubMed ID: 16923150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophin levels and behaviour in BALB/c mice: impact of intermittent exposure to individual housing and wheel running.
    Zhu SW; Pham TM; Aberg E; Brené S; Winblad B; Mohammed AH; Baumans V
    Behav Brain Res; 2006 Feb; 167(1):1-8. PubMed ID: 16343654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D; Weinandy R; Gattermann R
    Physiol Behav; 2007 Feb; 90(2-3):325-33. PubMed ID: 17084868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of access to a running wheel on behavior of C57BL/6J mice.
    Harri M; Lindblom J; Malinen H; Hyttinen M; Lapveteläinen T; Eskola S; Helminen HJ
    Lab Anim Sci; 1999 Aug; 49(4):401-5. PubMed ID: 10480645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.
    Kas MJ; de Mooij-van Malsen AJ; Olivier B; Spruijt BM; van Ree JM
    Behav Neurosci; 2008 Aug; 122(4):769-76. PubMed ID: 18729629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?
    Richter H; Ambrée O; Lewejohann L; Herring A; Keyvani K; Paulus W; Palme R; Touma C; Schäbitz WR; Sachser N
    Behav Brain Res; 2008 Jun; 190(1):74-84. PubMed ID: 18342378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opioid-mediated pain sensitivity in mice bred for high voluntary wheel running.
    Li G; Rhodes JS; Girard I; Gammie SC; Garland T
    Physiol Behav; 2004 Dec; 83(3):515-24. PubMed ID: 15581674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced alcohol consumption in mice with access to a running wheel.
    Ehringer MA; Hoft NR; Zunhammer M
    Alcohol; 2009 Sep; 43(6):443-52. PubMed ID: 19801274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian pattern of total and free corticosterone concentrations, corticosteroid-binding globulin, and physical activity in mice selectively bred for high voluntary wheel-running behavior.
    Malisch JL; Breuner CW; Gomes FR; Chappell MA; Garland T
    Gen Comp Endocrinol; 2008 Apr; 156(2):210-7. PubMed ID: 18329645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic influence on daily wheel running activity level.
    Lightfoot JT; Turner MJ; Daves M; Vordermark A; Kleeberger SR
    Physiol Genomics; 2004 Nov; 19(3):270-6. PubMed ID: 15383638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass.
    Basterfield L; Lumley LK; Mathers JC
    Int J Obes (Lond); 2009 Feb; 33(2):212-8. PubMed ID: 19139751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral assessment of intermittent wheel running and individual housing in mice in the laboratory.
    Pham TM; Brené S; Baumans V
    J Appl Anim Welf Sci; 2005; 8(3):157-73. PubMed ID: 16468945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.
    Dubreucq S; Koehl M; Abrous DN; Marsicano G; Chaouloff F
    Exp Neurol; 2010 Jul; 224(1):106-13. PubMed ID: 20138171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/6J mice.
    Tang X; Xiao J; Parris BS; Fang J; Sanford LD
    Physiol Behav; 2005 Jul; 85(4):419-29. PubMed ID: 16019041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth.
    Engesser-Cesar C; Ichiyama RM; Nefas AL; Hill MA; Edgerton VR; Cotman CW; Anderson AJ
    Eur J Neurosci; 2007 Apr; 25(7):1931-9. PubMed ID: 17439482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheel-running activity increases with social stress in male DBA mice.
    Uchiumi K; Aoki M; Kikusui T; Takeuchi Y; Mori Y
    Physiol Behav; 2008 Jan; 93(1-2):1-7. PubMed ID: 17707070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.
    Rezende EL; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2009; 82(6):662-79. PubMed ID: 19799520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral despair and home-cage activity in mice with chronically elevated baseline corticosterone concentrations.
    Malisch JL; Breuner CW; Kolb EM; Wada H; Hannon RM; Chappell MA; Middleton KM; Garland T
    Behav Genet; 2009 Mar; 39(2):192-201. PubMed ID: 19067154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.