BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 15863235)

  • 21. Effects of ramelteon and triazolam in a mouse genetic model of early morning awakenings.
    Wisor JP; Jiang P; Striz M; O'Hara BF
    Brain Res; 2009 Nov; 1296():46-55. PubMed ID: 19664610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids.
    Vargas-Pérez H; Sellings LH; Paredes RG; Prado-Alcalá RA; Díaz JL
    J Mot Behav; 2008 Nov; 40(6):587-93. PubMed ID: 18980911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A comparison of the behavioral response of the field mouse (Apodemus sylvaticus L.) to a 24 hour fast as measured by actograph or in a cage].
    Schenk F
    J Physiol (Paris); 1975 Nov; 70(3):273-85. PubMed ID: 1206592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests.
    Beeler JA; Prendergast B; Zhuang X
    Physiol Behav; 2006 May; 87(5):870-80. PubMed ID: 16600314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Running wheel accessibility affects the regional electroencephalogram during sleep in mice.
    Vyazovskiy VV; Ruijgrok G; Deboer T; Tobler I
    Cereb Cortex; 2006 Mar; 16(3):328-36. PubMed ID: 15901653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of access to voluntary wheel running on the development of stereotypy.
    Pawlowicz A; Demner A; Lewis MH
    Behav Processes; 2010 Mar; 83(3):242-6. PubMed ID: 19944132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emotional consequences of wheel running in mice: which is the appropriate control?
    Dubreucq S; Marsicano G; Chaouloff F
    Hippocampus; 2011 Mar; 21(3):239-42. PubMed ID: 20232385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of voluntary exercise in enriched rearing: a behavioral analysis.
    Pietropaolo S; Feldon J; Alleva E; Cirulli F; Yee BK
    Behav Neurosci; 2006 Aug; 120(4):787-803. PubMed ID: 16893285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological validation of a novel home cage activity counter in mice.
    Ganea K; Liebl C; Sterlemann V; Müller MB; Schmidt MV
    J Neurosci Methods; 2007 May; 162(1-2):180-6. PubMed ID: 17320190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separating the effects of shelter from additional cage enhancements for group-housed BALB/cJ mice.
    Swetter BJ; Karpiak CP; Cannon JT
    Neurosci Lett; 2011 May; 495(3):205-9. PubMed ID: 21457758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms.
    Belke TW; Wagner JP
    Behav Processes; 2005 Feb; 68(2):165-72. PubMed ID: 15686826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Running-wheel activity and body composition in golden hamsters (Mesocricetus auratus).
    Gattermann R; Weinandy R; Fritzsche P
    Physiol Behav; 2004 Sep; 82(2-3):541-4. PubMed ID: 15276820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective breeding for increased home cage physical activity in collaborative cross and Hsd:ICR mice.
    Zombeck JA; Deyoung EK; Brzezinska WJ; Rhodes JS
    Behav Genet; 2011 Jul; 41(4):571-82. PubMed ID: 21184167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hippocampal cell proliferation across the day: increase by running wheel activity, but no effect of sleep and wakefulness.
    van der Borght K; Ferrari F; Klauke K; Roman V; Havekes R; Sgoifo A; van der Zee EA; Meerlo P
    Behav Brain Res; 2006 Feb; 167(1):36-41. PubMed ID: 16214238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.
    Dlugosz EM; Chappell MA; McGillivray DG; Syme DA; Garland T
    J Exp Biol; 2009 Aug; 212(Pt 16):2612-8. PubMed ID: 19648406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of genetic background on daily running-wheel activity differs with aging.
    Turner MJ; Kleeberger SR; Lightfoot JT
    Physiol Genomics; 2005 Jun; 22(1):76-85. PubMed ID: 15855385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Running wheel choice by Syrian hamsters.
    Reebs SG; St-Onge P
    Lab Anim; 2005 Oct; 39(4):442-51. PubMed ID: 16197712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A highly sensitive automated complex running wheel test to detect latent motor deficits in the mouse MPTP model of Parkinson's disease.
    Liebetanz D; Baier PC; Paulus W; Meuer K; Bähr M; Weishaupt JH
    Exp Neurol; 2007 May; 205(1):207-13. PubMed ID: 17341420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.