These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15863473)

  • 21. Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid.
    Gao Y; Hulsen MA; Kang TG; den Toonder JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041503. PubMed ID: 23214587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information when young.
    Gagliardo A; Ioalè P; Savini M; Wild M
    J Exp Biol; 2008 Jul; 211(Pt 13):2046-51. PubMed ID: 18552292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells.
    Wilhelm C; Gazeau F; Bacri JC
    Eur Biophys J; 2002 May; 31(2):118-25. PubMed ID: 12012115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bird navigation: what type of information does the magnetite-based receptor provide?
    Wiltschko W; Munro U; Ford H; Wiltschko R
    Proc Biol Sci; 2006 Nov; 273(1603):2815-20. PubMed ID: 17015316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning of magnetic compass directions in pigeons.
    Wilzeck C; Wiltschko W; Güntürkün O; Buschmann JU; Wiltschko R; Prior H
    Anim Cogn; 2010 May; 13(3):443-51. PubMed ID: 19937359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons.
    Gagliardo A; Ioalè P; Savini M; Wild JM
    J Exp Biol; 2006 Aug; 209(Pt 15):2888-92. PubMed ID: 16857872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prussian blue technique is prone to yield false negative results in magnetoreception research.
    Curdt F; Haase K; Ziegenbalg L; Greb H; Heyers D; Winklhofer M
    Sci Rep; 2022 May; 12(1):8803. PubMed ID: 35614116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetite-based magnetoreception.
    Kirschvink JL; Walker MM; Diebel CE
    Curr Opin Neurobiol; 2001 Aug; 11(4):462-7. PubMed ID: 11502393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The magnetic compass of domestic chickens, Gallus gallus.
    Wiltschko W; Freire R; Munro U; Ritz T; Rogers L; Thalau P; Wiltschko R
    J Exp Biol; 2007 Jul; 210(Pt 13):2300-10. PubMed ID: 17575035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Rationally Designed Building Block of the Putative Magnetoreceptor MagR.
    Yang P; Cai T; Zhang L; Yu D; Guo Z; Zhang Y; Li G; Zhang X; Xie C
    Bioelectromagnetics; 2022 Jul; 43(5):317-326. PubMed ID: 35598081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons.
    Treiber CD; Salzer M; Breuss M; Ushakova L; Lauwers M; Edelman N; Keays DA
    Commun Integr Biol; 2013 Jul; 6(4):e24859. PubMed ID: 23940826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective mixing in a microfluidic chip using magnetic particles.
    Lee SH; van Noort D; Lee JY; Zhang BT; Park TH
    Lab Chip; 2009 Feb; 9(3):479-82. PubMed ID: 19156301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Thermodynamic properties of bulk knitted structures].
    Ponomarev OA; Susak IP; Fesenko EE; Shigaev AD
    Biofizika; 2002; 47(3):395-410. PubMed ID: 12068593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Magnetoreception systems in birds: a review of current research].
    Kishkinev DA; Chernetsov NS
    Zh Obshch Biol; 2014; 75(2):104-23. PubMed ID: 25490840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetoreception and its use in bird navigation.
    Mouritsen H; Ritz T
    Curr Opin Neurobiol; 2005 Aug; 15(4):406-14. PubMed ID: 16006116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A magnetic protein biocompass.
    Qin S; Yin H; Yang C; Dou Y; Liu Z; Zhang P; Yu H; Huang Y; Feng J; Hao J; Hao J; Deng L; Yan X; Dong X; Zhao Z; Jiang T; Wang HW; Luo SJ; Xie C
    Nat Mater; 2016 Feb; 15(2):217-26. PubMed ID: 26569474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the use of magnets to disrupt the physiological compass of birds.
    Wang K; Mattern E; Ritz T
    Phys Biol; 2006 Oct; 3(3):220-31. PubMed ID: 17021386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.
    Diego-Rasilla FJ; Luengo RM; Phillips JB
    Behav Processes; 2015 Sep; 118():1-7. PubMed ID: 25981491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination.
    Lefeldt N; Dreyer D; Schneider NL; Steenken F; Mouritsen H
    J Exp Biol; 2015 Jan; 218(Pt 2):206-11. PubMed ID: 25452505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ring-chain structural transitions in a ferromagnetic particles system induced by a dc magnetic field.
    Morimoto H; Katano K; Maekawa T
    J Chem Phys; 2009 Jul; 131(3):034905. PubMed ID: 19624231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.